-
Notifications
You must be signed in to change notification settings - Fork 27
/
config_ant3d.ini
162 lines (135 loc) · 4.26 KB
/
config_ant3d.ini
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
# Please change format and folder paths
[DEFAULT]
SNAPSHOT = False
# OS: 'windows' or 'linux'
OS = windows
# If True, you may expirience a time delay
FORCE_PROCESS_ALL_FRAMES = False
# If USE_SERVER is false, the script simulator.py is run.
USE_SERVER = False
# If USE_SERVER is true, image fror SLAMP will be retrieved from this remote folder
LAUNCH_SERVER_PATH = ./Server_Connection/c++_send_images/server
# If USE_SERVER is false, the script simulator.py is run and will lookf for images to be streameed in this folder
SIMULATOR_IMG_DIR = D:\FromAhmad\_Immagini\TorreNord
# Images where the simulator will save the images for SLAM procesisng
IMGS_FROM_SERVER = ./imgs
#If using the simulator, take one image every STEP
STEP = 1
# The simulator will save images in this format
IMG_FORMAT = jpg
# For now equalization run inside simulator, do not work for images from server
EQUALIZE = False
# Enable debug mode
DEBUG = True
# MAX NUMBER TO PROCESS AT EACH LOOP
MAX_IMG_BATCH_SIZE = 1000
SIMULATOR_SLEEP_TIME = 0.25
SLEEP_TIME = 0.01
LOOP_CYCLES = 10000000
# COLMAP_EXE_DIR is the PARENT FOLDER of colmap exec!
COLMAP_EXE_DIR = C:\Users\lmorelli\Desktop\COLMAP\COLMAP-3.8-windows-cuda
INITIAL_SEQUENTIAL_OVERLAP = 1
# RE-INITIALIZE THE MODEL
# Percentage of oriented keyframes before reinitialization
MIN_ORIENTED_RATIO = 0.0001
NOT_ORIENTED_KFMS = 1
[CALIBRATION]
# OPENCV camera model (see COLMAP doc)
# {
# "0": "(SIMPLE_PINHOLE, 3)",
# "1": "(PINHOLE, 4)",
# "2": "(SIMPLE_RADIAL, 4)",
# "3": "(RADIAL, 5)",
# "4": "(OPENCV, 8)",
# "5": "(OPENCV_FISHEYE, 8)",
# "6": "(SIMPLE_RAFULL_OPENCVDIAL, 12)",
# "7": "(FOV, 5)",
# "8": "(SIMPLE_RADIAL_FISHEYE, 4)",
# "9": "(RADIAL_FISHEYE, 5)",
# "10": "(THIN_PRISM_FISHEYE, 12)"
# }
N_CAMERAS = 2
CAM0 = 9,612,512,201.636619,306.000000,256.000000,-0.074424,0.001785
CAM1 = 9,612,512,201.636619,306.000000,256.000000,-0.074424,0.001785
CAM2 =
CAM3 =
CAM4 =
BASELINE_CAM0_CAM1 = 0.110078
[KEYFRAME_SELECTION]
# KEYFRAME_SELECTION_METHOD: 'local_features'
METHOD = local_features
# LOCAL_FEATURE: 'ORB', 'ALIKE', 'KeyNetAffNetHardNet'
LOCAL_FEATURE = ALIKE
N_FEATURES = 512
INNOVATION_THRESH_PIX = 30
MIN_MATCHES = 5
ERROR_THRESHOLD = 4
MAX_ITERATIONS = 1000
# ALIKE OPTIONS
ALIKE_MODEL = alike-s
ALIKE_DEVICE = cuda
ALIKE_SCORES_TH = 0.2
ALIKE_N_LIMIT = 5000
ALIKE_SUBPIXEL = False
# ORB OPTIONS
# See https://docs.opencv.org/4.x/db/d95/classcv_1_1ORB.html
ORB_SCALE_FACTOR = 1.2
ORB_NLEVELS = 1
ORB_EDGE_THRESHOLD = 1
ORB_FIRST_LEVEL = 0
ORB_WTA_K = 2
# ORB_SCORE_TYPE = {'HARRIS_SCORE': 0, 'FAST_SCORE':1}
ORB_SCORE_TYPE = 0
ORB_PATCH_SIZE = 31
ORB_FAST_THRESHOLD = 0
[EXTERNAL_SENSORS]
# Exif GNSS coordinates are read directly from the images.
# If camera coordinates are known from other sensors,
# they can be stored in a txt file and used to scale
# the photogrammetric model in the format id, x, y, z.
# Exif data, if present, takes priority
USE_EXTERNAL_CAM_COORD = False
CAMERA_COORDINATES_FILE =
[LOCAL_FEATURES]
N_FEATURES = 512
MIN_MATCHES = 25
# LOCAL_FEATURE: 'RootSIFT', 'ORB', 'ALIKE', 'KeyNetAffNetHardNet', 'SuperGlue', 'DISK', 'SuperPoint', 'LoFTR'
LOCAL_FEATURE = SuperGlue
SUPERGLUE_NMS_RADIUS = 4
SUPERGLUE_KEYPOINT_THRESHOLD = 0.005
SUPERGLUE_WEIGHTS = indoor
SUPERGLUE_SINKHORN_ITERATIONS = 20
SUPERGLUE_MATCH_THRESHOLD = 0.2
ALIKE_MODEL = alike-l
ALIKE_DEVICE = cuda
ALIKE_SCORES_TH = 0.2
ALIKE_N_LIMIT = 5000
ALIKE_SUBPIXEL = True
# See https://docs.opencv.org/4.x/db/d95/classcv_1_1ORB.html
ORB_SCALE_FACTOR = 1.2
ORB_NLEVELS = 1
ORB_EDGE_THRESHOLD = 1
ORB_FIRST_LEVEL = 0
ORB_WTA_K = 2
# ORB_SCORE_TYPE = {'HARRIS_SCORE': 0, 'FAST_SCORE':1}
ORB_SCORE_TYPE = 0
ORB_PATCH_SIZE = 31
ORB_FAST_THRESHOLD = 0
[LOCAL_FEATURES_2]
USE_ADDITIONAL_FEATURES = False
N_FEATURES = 750
# LOCAL_FEATURE: 'SuperPoint'
LOCAL_FEATURE = SuperPoint
[MATCHING]
# For KORNIA_MATCHER: nn, snn, mnn, smnn, adalam or lightglue, loftr to be finished. See Kornia matcher options, if in doubt set to smnn.
KORNIA_MATCHER = smnn
RATIO_THRESHOLD = 0.95
# GEOMETRIC_VERIFICATION = 'ransac', 'pydegensac'
GEOMETRIC_VERIFICATION = pydegensac
MAX_ERROR = 3
CONFIDENCE = 0.999
ITERATIONS = 1000
LOOP_CLOSURE_DETECTION = False
VOCAB_TREE = /home/luca/Github_3DOM/vocab_tree_flickr100K_words32K.bin
[INCREMENTAL_RECONSTRUCTION]
MIN_KEYFRAME_FOR_INITIALIZATION = 3