-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathtrain.py
46 lines (37 loc) · 1.6 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import time
from options.train_options import TrainOptions
from data.data_loader import DataLoader
from models.combogan_model import ComboGANModel
from util.visualizer import Visualizer
opt = TrainOptions().parse()
dataset = DataLoader(opt)
print('# training images = %d' % len(dataset))
model = ComboGANModel(opt)
visualizer = Visualizer(opt)
total_steps = 0
# Update initially if continuing
if opt.which_epoch > 0:
model.update_hyperparams(opt.which_epoch)
for epoch in range(opt.which_epoch + 1, opt.niter + opt.niter_decay + 1):
epoch_start_time = time.time()
epoch_iter = 0
for i, data in enumerate(dataset):
iter_start_time = time.time()
total_steps += opt.batchSize
epoch_iter += opt.batchSize
model.set_input(data)
model.optimize_parameters()
if total_steps % opt.display_freq == 0:
visualizer.display_current_results(model.get_current_visuals(), epoch)
if total_steps % opt.print_freq == 0:
errors = model.get_current_errors()
t = (time.time() - iter_start_time) / opt.batchSize
visualizer.print_current_errors(epoch, epoch_iter, errors, t)
if opt.display_id > 0:
visualizer.plot_current_errors(epoch, float(epoch_iter)/dataset_size, opt, errors)
if epoch % opt.save_epoch_freq == 0:
print('saving the model at the end of epoch %d, iters %d' % (epoch, total_steps))
model.save(epoch)
print('End of epoch %d / %d \t Time Taken: %d sec' %
(epoch, opt.niter + opt.niter_decay, time.time() - epoch_start_time))
model.update_hyperparams(epoch)