-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathmyopenpose.py
153 lines (123 loc) · 5.31 KB
/
myopenpose.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import numpy as np
import torch
class MyOpenPoseNode:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"DWPose": ("IMAGE",),
"OpenPose": ("IMAGE",),
},
}
RETURN_TYPES = ("IMAGE",)
# RETURN_NAMES = ("output_image",)
FUNCTION = "add_images"
CATEGORY = "AInseven"
def hex_to_rgb(self, hex_color):
hex_color = hex_color.lstrip("#")
return [int(hex_color[i:i + 2], 16) for i in (0, 2, 4)]
def remove_color(self, image, hex_color="#000099"):
target_rgb = self.hex_to_rgb(hex_color)
# Convert PyTorch tensor to NumPy array
if isinstance(image, torch.Tensor):
image = image.cpu().numpy()
# Convert the target color to the same scale as the image
target_rgb_normalized = [c / 255.0 for c in target_rgb]
# Apply the color removal with a tolerance for small differences
tolerance = 0.01
mask = np.all(np.abs(image - target_rgb_normalized) < tolerance, axis=-1)
image[mask] = 0
# Convert back to PyTorch tensor
image = torch.from_numpy(image)
return image
def reserve_color(self, image, reserved_colors=["#000099", "#00FF00"]):
# Convert PyTorch tensor to NumPy array
if isinstance(image, torch.Tensor):
image = image.cpu().numpy()
# Convert the reserved colors to the same scale as the image
reserved_colors_normalized = []
for each in reserved_colors:
target_rgb = self.hex_to_rgb(each)
reserved_colors_normalized.append([c / 255.0 for c in target_rgb])
# Create a mask to reserve specified colors
mask = None
for color_normalized in reserved_colors_normalized:
color_mask = np.all(np.abs(image - color_normalized) < 0.01, axis=-1)
if mask is None:
mask = color_mask
else:
mask |= color_mask
# Set non-reserved colors to zero
image[~mask] = 0
# Convert back to PyTorch tensor
image = torch.from_numpy(image)
return image
# def remove_color(self, image, hex_color="#000099"):
# target_rgb = self.hex_to_rgb(hex_color)
#
# # Convert PyTorch tensor to NumPy array
# if isinstance(image, torch.Tensor):
# image = image.cpu().numpy()
#
# # Convert the target color to the same scale as the image
# target_rgb_normalized = [c / 255.0 for c in target_rgb]
#
# # Apply the color removal with a tolerance for small differences
# tolerance = 0.01
# mask = np.all(np.abs(image - target_rgb_normalized) < tolerance, axis=-1)
#
# # Set non-reserved colors to zero for each image in the batch
# image[:, :, :, :][mask] = 0
#
# # Convert back to PyTorch tensor
# image = torch.from_numpy(image)
#
# return image
#
# def reserve_color(self, image, reserved_colors=["#000099", "#00FF00"]):
# # Convert PyTorch tensor to NumPy array
# if isinstance(image, torch.Tensor):
# image = image.cpu().numpy()
#
# # Convert the reserved colors to the same scale as the image
# reserved_colors_normalized = []
# for each in reserved_colors:
# target_rgb = self.hex_to_rgb(each)
# reserved_colors_normalized.append([c / 255.0 for c in target_rgb])
#
# # Create a mask to reserve specified colors
# mask = None
# for color_normalized in reserved_colors_normalized:
# color_mask = np.all(np.abs(image - color_normalized) < 0.01, axis=-1)
# if mask is None:
# mask = color_mask
# else:
# mask |= color_mask
#
# # Set non-reserved colors to zero for each image in the batch
# image[:, :, :, :][~mask] = 0
#
# # Convert back to PyTorch tensor
# image = torch.from_numpy(image)
#
# return image
def add_images(self, DWPose, OpenPose):
print("type(DWPose)",type(DWPose))
print("DWPose shape",DWPose.shape)
# Remove the color #000099 from the input images
dwpose_color_to_remove = ['#000099', '#990066', '#990099', # 三条线
'#aa00ff', '#ff0000', '#ff00aa', '#ff00ff', '#ff0055',
'#660099', '#330099']
for each in dwpose_color_to_remove:
DWPose = self.remove_color(DWPose, hex_color=each)
OpenPose = self.reserve_color(OpenPose, reserved_colors=['#ff0055', '#ff00aa',
'#ffffff',
'#000099','#660099','#330099','#990099','#990066'
'#ff00aa','#ff0000','#ff0055'])
# Add the numpy arrays of the input images
result_image = np.add(DWPose, OpenPose)
return (result_image,)
# A dictionary that contains all nodes you want to export with their names
# NOTE: names should be globally unique