Skip to content
/ ANTsRNet Public

Medical image analysis framework merging ANTsR and deep learning

License

Notifications You must be signed in to change notification settings

ANTsX/ANTsRNet

Repository files navigation

Contributor Covenant PubMed

ANTsRNet

A collection of deep learning architectures and applications ported to the R language and tools for basic medical image processing. Based on keras and tensorflow with cross-compatibility with our python analog ANTsPyNet.

  • A large collection of common deep learning architectures for medical imaging that can be initialized
  • Various pre-trained deep learning models to perform key medical imaging tasks
  • Utility functions to improve training and evaluating of deep learning models on medical images

Overview

Installation

Prerequisites

You will need R (>=3.2) and C/C++ development tools including CMake (>= 3.16.3).

Installation steps

First, install keras in R

> install.packages(keras)
> keras::install_keras()

Then from the command line:

git clone https://github.com/stnava/ITKR.git
git clone https://github.com/ANTsX/ANTsRCore.git
git clone https://github.com/ANTsX/ANTsR.git
R CMD INSTALL ITKR 
R CMD INSTALL ANTsRCore
R CMD INSTALL ANTsR
R CMD INSTALL ANTsRNet
Architectures

Image voxelwise segmentation/regression

Image classification/regression

Object detection

Image super-resolution

Registration and transforms

Generative adverserial networks

Clustering

Applications
Publications
  • Nicholas J. Tustison, Min Chen, Fae N. Kronman, Jeffrey T. Duda, Clare Gamlin, Mia G. Tustison, Michael Kunst, Rachel Dalley, Staci Sorenson, Quanxi Wang, Lydia Ng, Yongsoo Kim, and James C. Gee. The ANTsX Ecosystem for Mapping the Mouse Brain. (biorxiv)

  • Nicholas J. Tustison, Michael A. Yassa, Batool Rizvi, Philip A. Cook, Andrew J. Holbrook, Mithra Sathishkumar, Mia G. Tustison, James C. Gee, James R. Stone, and Brian B. Avants. ANTsX neuroimaging-derived structural phenotypes of UK Biobank. Scientific Reports, 14(1):8848, Apr 2024. (pubmed)

  • Nicholas J. Tustison, Talissa A. Altes, Kun Qing, Mu He, G. Wilson Miller, Brian B. Avants, Yun M. Shim, James C. Gee, John P. Mugler III, and Jaime F. Mata. Image- versus histogram-based considerations in semantic segmentation of pulmonary hyperpolarized gas images. Magnetic Resonance in Medicine, 86(5):2822-2836, Nov 2021. (pubmed)

  • Andrew T. Grainger, Arun Krishnaraj, Michael H. Quinones, Nicholas J. Tustison, Samantha Epstein, Daniela Fuller, Aakash Jha, Kevin L. Allman, Weibin Shi. Deep Learning-based Quantification of Abdominal Subcutaneous and Visceral Fat Volume on CT Images, Academic Radiology, 28(11):1481-1487, Nov 2021. (pubmed)

  • Nicholas J. Tustison, Philip A. Cook, Andrew J. Holbrook, Hans J. Johnson, John Muschelli, Gabriel A. Devenyi, Jeffrey T. Duda, Sandhitsu R. Das, Nicholas C. Cullen, Daniel L. Gillen, Michael A. Yassa, James R. Stone, James C. Gee, and Brian B. Avants for the Alzheimer’s Disease Neuroimaging Initiative. The ANTsX ecosystem for quantitative biological and medical imaging. Scientific Reports. 11(1):9068, Apr 2021. (pubmed)

  • Nicholas J. Tustison, Brian B. Avants, and James C. Gee. Learning image-based spatial transformations via convolutional neural networks: a review, Magnetic Resonance Imaging, 64:142-153, Dec 2019. (pubmed)

  • Nicholas J. Tustison, Brian B. Avants, Zixuan Lin, Xue Feng, Nicholas Cullen, Jaime F. Mata, Lucia Flors, James C. Gee, Talissa A. Altes, John P. Mugler III, and Kun Qing. Convolutional Neural Networks with Template-Based Data Augmentation for Functional Lung Image Quantification, Academic Radiology, 26(3):412-423, Mar 2019. (pubmed)

  • Andrew T. Grainger, Nicholas J. Tustison, Kun Qing, Rene Roy, Stuart S. Berr, and Weibin Shi. Deep learning-based quantification of abdominal fat on magnetic resonance images. PLoS One, 13(9):e0204071, Sep 2018. (pubmed)

  • Cullen N.C., Avants B.B. (2018) Convolutional Neural Networks for Rapid and Simultaneous Brain Extraction and Tissue Segmentation. In: Spalletta G., Piras F., Gili T. (eds) Brain Morphometry. Neuromethods, vol 136. Humana Press, New York, NY doi

Acknowledgements

Other resources

Documentation page

ANTsXNet self-contained examples

About

Medical image analysis framework merging ANTsR and deep learning

Topics

Resources

License

Code of conduct

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •  

Languages