-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmain.py
47 lines (40 loc) · 1.72 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
# Modified from Yang Song's repo: https://github.com/yang-song/score_sde_pytorch
import os
from absl import app
from absl import flags
from ml_collections.config_flags import config_flags
from torch.utils.tensorboard import SummaryWriter
from ipdb import set_trace
from runners.train_gf import gf_trainer
from runners.train_rl import rl_trainer
from runners.eval_policy import test_policy
from utils.misc import exists_or_mkdir
FLAGS = flags.FLAGS
config_flags.DEFINE_config_file("config", None, "Training configuration.", lock_config=True)
flags.DEFINE_string("workdir", None, "Work directory.")
flags.DEFINE_enum("mode", None, ["train_gf", "train_rl", "test_policy"], "Running mode: train modules or eval policies")
flags.mark_flags_as_required(["workdir", "config", "mode"])
def main(argv):
# create log dirs
exists_or_mkdir('./logs')
exists_or_mkdir(os.path.join('./logs', FLAGS.workdir))
if FLAGS.mode == "train_gf":
exists_or_mkdir(os.path.join('./logs', FLAGS.workdir, 'test_videos'))
tb_path = os.path.join('./logs', FLAGS.workdir, 'tb')
exists_or_mkdir(tb_path)
writer = SummaryWriter(tb_path)
# Run the training pipeline
gf_trainer(FLAGS.config, FLAGS.workdir, writer)
elif FLAGS.mode == "train_rl":
tb_path = os.path.join('./logs', FLAGS.workdir, 'tb')
exists_or_mkdir(tb_path)
writer = SummaryWriter(tb_path)
# Run the training pipeline
rl_trainer(FLAGS.config, FLAGS.workdir, writer)
elif FLAGS.mode == 'test_policy':
# Run the (test-time) evaluation pipeline
test_policy(FLAGS.config, FLAGS.workdir)
else:
raise ValueError(f"Mode {FLAGS.mode} not recognized.")
if __name__ == "__main__":
app.run(main)