-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmetrics.py
242 lines (189 loc) · 8.44 KB
/
metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import os
from PIL import Image
import tensorflow as tf
import numpy as np
import lpips_tf
from cv2 import *
from matplotlib import pyplot as plt
calcOpticalFlow = cv2.calcOpticalFlowFarneback
rgb2gray = lambda img: cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
tLPmodel = lambda img_0, img_1: lpips_tf.lpips(img_0, img_1, model='net-lin', net='alex')
def crop_8x8(img):
ori_h = img.shape[0]
ori_w = img.shape[1]
h = (ori_h // 32) * 32
w = (ori_w // 32) * 32
while (h > ori_h - 16):
h = h - 32
while (w > ori_w - 16):
w = w - 32
y = (ori_h - h) // 2
x = (ori_w - w) // 2
crop_img = img[y:y + h, x:x + w]
return crop_img, y, x
# Temporal Optical Flow https://ge.in.tum.de/publications/2019-tecogan-chu/
def tOF(pre_out_img_gray, out_img_gray, pre_tar_img_gray, tar_img_gray):
target_OF = cv2.calcOpticalFlowFarneback(pre_tar_img_gray, tar_img_gray, None, 0.5, 3, 15, 3, 5, 1.2, 0)
output_OF = cv2.calcOpticalFlowFarneback(pre_out_img_gray, out_img_gray, None, 0.5, 3, 15, 3, 5, 1.2, 0)
target_OF, ofy, ofx = crop_8x8(target_OF)
output_OF, ofy, ofx = crop_8x8(output_OF)
OF_diff = np.absolute(target_OF - output_OF)
OF_diff = np.sqrt(np.sum(OF_diff * OF_diff, axis=-1)) # l1 vector norm
# OF_diff, ofy, ofx = crop_8x8(OF_diff)
# list_dict["tOF"].append(OF_diff.mean())
# msg += "tOF %02.2f, " % (list_dict["tOF"][-1])
return OF_diff
# Tempotal LPIPS https://ge.in.tum.de/publications/2019-tecogan-chu/
def tLP100(pre_out_img, out_img, pre_tar_img, tar_img):
dist0t = tLPmodel(pre_tar_img, tar_img)
dist1t = tLPmodel(pre_out_img, out_img)
# print ("tardis %f, outdis %f" %(dist0t, dist1t))
dist01t = np.absolute(dist0t - dist1t) * 100.0 ##########!!!!!
# list_dict["tLP100"].append(dist01t[0])
# msg += ", tLPx100 %02.2f" % (dist01t[0])
return dist01t
def load_image(fname):
img = Image.open(fname)
return tf.keras.preprocessing.image.img_to_array(img)/250.0
def load_metric_fn(method):
method_fns = {}
metric_dict = {}
image0_ph = tf.placeholder(tf.float32)
image1_ph = tf.placeholder(tf.float32)
session = tf.Session()
if method == 'all':
method = ['psnr', 'ssim', 'lpips', 'tLP100', 'tOF']
elif method == 'temporal':
method = ['tLP100', 'tOF']
else:
method = [method]
for fn_name in method:
if fn_name == 'psnr':
fn = session.make_callable(
tf.image.psnr(image0_ph, image1_ph, max_val=1.),
[image0_ph, image1_ph])
if fn_name == 'ssim':
fn = session.make_callable(
tf.image.ssim(image0_ph, image1_ph, max_val=1.),
[image0_ph, image1_ph])
if fn_name == 'lpips':
fn = session.make_callable(
lpips_tf.lpips(image0_ph, image1_ph, model='net-lin', net='vgg'),
[image0_ph, image1_ph])
if fn_name == 'tLP100':
fn = session.make_callable(
lpips_tf.lpips(image0_ph, image1_ph, model='net-lin', net='alex'),
[image0_ph, image1_ph]
)
if fn_name == 'tOF':
fn = session.make_callable(
lpips_tf.lpips(image0_ph, image1_ph, model='net-lin', net='alex'),
[image0_ph, image1_ph]
)
# Add new methods here!
method_fns[fn_name.upper()] = fn
metric_dict[fn_name.upper()] = []
return method_fns, metric_dict
def config_parser():
import configargparse
parser = configargparse.ArgumentParser()
parser.add_argument("--method", type=str, default='temporal',
help='method name: all, lpips, psnr, ssim, temporal')
parser.add_argument("--gt_dir", type=str, default='/home/julian/Desktop/renderings_kitti/0006/gt_0006_65_120',
help='GT images directory')
parser.add_argument("--render_dir", type=str, default='/home/julian/Desktop/renderings_kitti/0006/latent_jointly_04_really_big_dense_boxes/renderonly_path_990001',
help='Rendering dir')
parser.add_argument("--batch_size", type=int, default=1,
help="Number of image pairs evaluated at the same time")
return parser
def main():
"""
Calculate lpips, psnr, ssim, tLP and tOF
"""
parser = config_parser()
args = parser.parse_args()
center_cut = False
if 'srn' in args.render_dir:
center_cut = True
gt_img_names = [img_name for img_name in sorted(os.listdir(args.gt_dir)) if img_name[-3:] == 'png']
renderings_names = [img_name for img_name in sorted(os.listdir(args.render_dir)) if img_name[-3:] == 'png']
method_fns, metric_dict = load_metric_fn(args.method)
if not len(gt_img_names) == len(renderings_names):
print('Renderings and GT images do not match!!')
elif args.method == 'temporal':
pass
else:
n = len(gt_img_names)
gt_imgs = np.concatenate([
load_image(os.path.join(args.gt_dir, gt_img_names[i]))[None] for i in range(n)])
if center_cut:
gt_imgs = gt_imgs[:, :, 1242//2-375//2:1242//2+375//2+1, :]
renderings = np.concatenate([
load_image(os.path.join(args.render_dir, renderings_names[i]))[None] for i in range(n)])
# image 2 image comparison
for name, method in method_fns.items():
k = 0
while k <= n:
value = method(gt_imgs[k:(k+1)*args.batch_size], renderings[k:(k+1)*args.batch_size])
metric_dict[name].append(value)
k += args.batch_size
# temporal metrics for two adjacent frames
if args.method == 'temporal' or args.method == 'all':
n = len(gt_img_names)
gt_imgs = np.concatenate([
load_image(os.path.join(args.gt_dir, gt_img_names[i]))[None] for i in range(n)])
if center_cut:
gt_imgs = gt_imgs[:, :, 1242//2-375//2:1242//2+375//2+1, :]
renderings = np.concatenate([
load_image(os.path.join(args.render_dir, renderings_names[i]))[None] for i in range(n)])
tLP_model = method_fns['TLP100']
k = 1
while k < n:
output_img = renderings[k, ...]
target_img = gt_imgs[k, ...]
# tOF
output_grey = cv2.cvtColor(output_img, cv2.COLOR_RGB2GRAY)
target_grey = cv2.cvtColor(target_img, cv2.COLOR_RGB2GRAY)
if (k >= 2): # temporal metrics
target_OF = cv2.calcOpticalFlowFarneback(pre_tar_grey, target_grey, None, 0.5, 3, 15, 3, 5, 1.2, 0)
output_OF = cv2.calcOpticalFlowFarneback(pre_out_grey, output_grey, None, 0.5, 3, 15, 3, 5, 1.2, 0)
target_OF, ofy, ofx = crop_8x8(target_OF)
output_OF, ofy, ofx = crop_8x8(output_OF)
OF_diff = np.absolute(target_OF - output_OF)
OF_diff = np.sqrt(np.sum(OF_diff * OF_diff, axis=-1)) # l1 vector norm
# OF_diff, ofy, ofx = crop_8x8(OF_diff)
# list_dict["tOF"].append(OF_diff.mean())
# msg += "tOF %02.2f, " % (list_dict["tOF"][-1])
metric_dict['TOF'].append([OF_diff.mean()])
# print(OF_diff.mean())
pre_out_grey = output_grey
pre_tar_grey = target_grey
# tLP100
target_img, ofy, ofx = crop_8x8(target_img)
output_img, ofy, ofx = crop_8x8(output_img)
# img0 = util.im2tensor(target_img) # RGB image from [-1,1]
img0 = target_img
# img1 = util.im2tensor(output_img)
img1 = output_img
if "TLP100" in method_fns.keys() and (k >= 2): # tLP, temporal metrics
dist0t = tLP_model(pre_img0, img0)
dist1t = tLP_model(pre_img1, img1)
# print ("tardis %f, outdis %f" %(dist0t, dist1t))
dist01t = np.absolute(dist0t - dist1t) * 100.0 ##########!!!!!
# list_dict["tLP100"].append(dist01t[0])
# msg += ", tLPx100 %02.2f" % (dist01t[0])
metric_dict['TLP100'].append([dist01t])
# print(dist01t)
pre_img0 = img0
pre_img1 = img1
k += 1
# msg += ", crop (%d, %d)" % (ofy, ofx)
# print(msg)
if metric_dict:
for name, val_ls in metric_dict.items():
# print(name)
# print(val_ls)
val_avg = np.mean(np.concatenate(val_ls))
print(name, val_avg)
if __name__ == '__main__':
main()