-
Notifications
You must be signed in to change notification settings - Fork 89
/
unsupervised_detection_contrast.py
134 lines (105 loc) · 4.89 KB
/
unsupervised_detection_contrast.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
# Author:Maxiao
# E-mail:[email protected]
# Github:https://github.com/Albertsr
import time
import numpy as np
import pandas as pd
import seaborn as sns
import mahal_dist as md
import RobustPCC as rp
import PCA_Recon_Error as rep
import KPCA_Recon_Error as rek
from sklearn.metrics import *
from sklearn.datasets import *
from sklearn.ensemble import IsolationForest
from sklearn.neighbors import LocalOutlierFactor
from matplotlib import pyplot as plt
from pandas.plotting import parallel_coordinates
%matplotlib inline
def predict_anomaly_indices(X, contamination):
# 孤立森林
iforest = IsolationForest(n_estimators=125, contamination=contamination,
behaviour='new', random_state=2018, n_jobs=-1)
# Returns -1 for outliers and 1 for inliers.
iforest_pred = iforest.fit_predict(X)
iforest_result = np.array([1 if pred==-1 else 0 for pred in iforest_pred])
# LOF
lof = LocalOutlierFactor(contamination=contamination, p=2, novelty=False, n_jobs=-1)
# Returns -1 for outliers and 1 for inliers.
lof_pred = lof.fit_predict(X)
lof_result = np.array([1 if pred==-1 else 0 for pred in lof_pred])
# 马氏距离
dist = md.mahal_dist(X)
anomaly_num = int(np.ceil(contamination * len(X)))
md_idx = np.argsort(-dist)[:anomaly_num]
mahal_result = np.array([1 if i in md_idx else 0 for i in range(len(X))])
# RobustPCC
rpcc = rp.RobustPCC(X, X, gamma=0.01, quantile=99, contamination=contamination)
rpcc_result = rpcc.predict()
#LinearPCA重构
pre = rep.PCA_Recon_Error(X, contamination=contamination)
pre_result = pre.predict()
##KernelPCA重构
kre = rek.KPCA_Recon_Error(X, contamination=contamination, kernel='linear')
print('KernelPCA starts.')
start = time.time()
kre_result = kre.predict()
end = time.time()
print("KernelPCA cost time: {:.2f}s".format(end-start))
anomaly_pred = [iforest_result, lof_result, mahal_result, pre_result, kre_result, rpcc_result]
return np.array(anomaly_pred)
def evaluate_model(y_true, y_pred):
assert len(y_true) == len(y_pred)
acc = accuracy_score(y_true, y_pred).round(4)
f1 = f1_score(y_true, y_pred).round(4)
recall = recall_score(y_true, y_pred).round(4)
precision = precision_score(y_true, y_pred).round(4)
decription = 'F1:{:.3f}, ACC:{:.3F}, Recall:{:.3f}, Precision:{:.3f}'
df_temp = pd.DataFrame([f1, acc, recall, precision]).T
df_temp.columns = ['F1', 'ACC', 'Recall', 'Precision']
return df_temp
def contrast_models(X, y_true, metric=['f1']):
contamination = sum(y_true) / len(X)
anomaly_pred = predict_anomaly_indices(X, contamination)
df_res = pd.concat([evaluate_model(y_true, i) for i in anomaly_pred])
df_res.index = ['Isolation Forest', 'LOF', 'Mahalanobis Dist', 'PCA_Recon_Error', 'KPCA_Recon_Error', 'Robust PCC']
cols1 = np.array(['f1', 'acc', 'recall', 'precision'])
cols2 = np.array(['F1', 'ACC', 'Recall', 'Precision'])
display_metrics = cols2[[np.argwhere(cols1==i)[0][0] for i in metric]]
return pd.DataFrame(df_res.loc[:, display_metrics]).T
def generate_dataset(seed):
rdg = np.random.RandomState(seed)
row = rdg.randint(2500, 3000) #rdg.randint(2500, 3000)
col = rdg.randint(30, 35)
contamination = rdg.uniform(0.015, 0.025)
outlier_num = int(row*contamination)
inlier_num = row - outlier_num
# 正常样本集服从标准正态分布
inliers = rdg.randn(inlier_num, col)
# 如果outlier_num为奇数,row_1=outlier_num//2,否则row_1=int(outlier_num/2)
row_1 = outlier_num//2 if np.mod(outlier_num, 2) else int(outlier_num/2)
row_2 = outlier_num - row_1
# outliers_sub_1服从伽玛分布;outliers_sub_2服从指数分布
outliers_sub_1 = rdg.gamma(shape=2, scale=0.5, size=(row_1 , col))
outliers_sub_2 = rdg.exponential(1.5, size=(row_2, col))
outliers = np.r_[outliers_sub_1, outliers_sub_2]
# 将inliers与outliers在axis=0方向上予以整合,构成实验数据集
X = np.r_[inliers, outliers]
y = np.r_[np.zeros(len(inliers)), np.ones(len(outliers))]
return X, y
seeds = np.random.RandomState(2018).choice(range(1000), size=10, replace=False)
datasets = [generate_dataset(seed) for seed in seeds]
def get_metric_df(datasets, metric):
df_metrics = pd.concat([contrast_models(i[0], i[1], metric=metric) for i in datasets])
df_metrics['dataset'] = np.array([['Dataset_' + str(i)]*len(metric) for i in range(len(datasets))]).ravel()
return df_metrics
def plot_parallel(df):
plt.figure(figsize=(12, 6))
plt.title(df.index[0]+' score of different algorithms', fontsize=15)
parallel_coordinates(df, 'dataset')
plt.grid(lw=0.1)
plt.legend(loc=4)
plt.ylabel(df.index[0], fontsize=14)
plt.show()
df_metrics = get_metric_df(datasets, ['f1', 'acc', 'recall', 'precision'])
plot_parallel(df_metrics.loc['F1'])