forked from psteinb/GPU-STREAM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
OMPStream.cpp
220 lines (197 loc) · 4.59 KB
/
OMPStream.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
// Copyright (c) 2015-16 Tom Deakin, Simon McIntosh-Smith,
// University of Bristol HPC
//
// For full license terms please see the LICENSE file distributed with this
// source code
#include "OMPStream.h"
#ifndef ALIGNMENT
#define ALIGNMENT (2*1024*1024) // 2MB
#endif
template <class T>
OMPStream<T>::OMPStream(const unsigned int ARRAY_SIZE, T *a, T *b, T *c, int device)
{
array_size = ARRAY_SIZE;
#ifdef OMP_TARGET_GPU
omp_set_default_device(device);
// Set up data region on device
this->a = a;
this->b = b;
this->c = c;
#pragma omp target enter data map(alloc: a[0:array_size], b[0:array_size], c[0:array_size])
{}
#else
// Allocate on the host
this->a = (T*)aligned_alloc(ALIGNMENT, sizeof(T)*array_size);
this->b = (T*)aligned_alloc(ALIGNMENT, sizeof(T)*array_size);
this->c = (T*)aligned_alloc(ALIGNMENT, sizeof(T)*array_size);
#endif
}
template <class T>
OMPStream<T>::~OMPStream()
{
#ifdef OMP_TARGET_GPU
// End data region on device
unsigned int array_size = this->array_size;
T *a = this->a;
T *b = this->b;
T *c = this->c;
#pragma omp target exit data map(release: a[0:array_size], b[0:array_size], c[0:array_size])
{}
#else
free(a);
free(b);
free(c);
#endif
}
template <class T>
void OMPStream<T>::init_arrays(T initA, T initB, T initC)
{
unsigned int array_size = this->array_size;
#ifdef OMP_TARGET_GPU
T *a = this->a;
T *b = this->b;
T *c = this->c;
#pragma omp target teams distribute parallel for simd map(to: a[0:array_size], b[0:array_size], c[0:array_size])
#else
#pragma omp parallel for
#endif
for (int i = 0; i < array_size; i++)
{
a[i] = initA;
b[i] = initB;
c[i] = initC;
}
}
template <class T>
void OMPStream<T>::read_arrays(std::vector<T>& h_a, std::vector<T>& h_b, std::vector<T>& h_c)
{
#ifdef OMP_TARGET_GPU
T *a = this->a;
T *b = this->b;
T *c = this->c;
#pragma omp target update from(a[0:array_size], b[0:array_size], c[0:array_size])
{}
#else
#pragma omp parallel for
for (int i = 0; i < array_size; i++)
{
h_a[i] = a[i];
h_b[i] = b[i];
h_c[i] = c[i];
}
#endif
}
template <class T>
void OMPStream<T>::copy()
{
#ifdef OMP_TARGET_GPU
unsigned int array_size = this->array_size;
T *a = this->a;
T *c = this->c;
#pragma omp target teams distribute parallel for simd map(to: a[0:array_size], c[0:array_size])
#else
#pragma omp parallel for
#endif
for (int i = 0; i < array_size; i++)
{
c[i] = a[i];
}
}
template <class T>
void OMPStream<T>::mul()
{
const T scalar = startScalar;
#ifdef OMP_TARGET_GPU
unsigned int array_size = this->array_size;
T *b = this->b;
T *c = this->c;
#pragma omp target teams distribute parallel for simd map(to: b[0:array_size], c[0:array_size])
#else
#pragma omp parallel for
#endif
for (int i = 0; i < array_size; i++)
{
b[i] = scalar * c[i];
}
}
template <class T>
void OMPStream<T>::add()
{
#ifdef OMP_TARGET_GPU
unsigned int array_size = this->array_size;
T *a = this->a;
T *b = this->b;
T *c = this->c;
#pragma omp target teams distribute parallel for simd map(to: a[0:array_size], b[0:array_size], c[0:array_size])
#else
#pragma omp parallel for
#endif
for (int i = 0; i < array_size; i++)
{
c[i] = a[i] + b[i];
}
}
template <class T>
void OMPStream<T>::triad()
{
const T scalar = startScalar;
#ifdef OMP_TARGET_GPU
unsigned int array_size = this->array_size;
T *a = this->a;
T *b = this->b;
T *c = this->c;
#pragma omp target teams distribute parallel for simd map(to: a[0:array_size], b[0:array_size], c[0:array_size])
#else
#pragma omp parallel for
#endif
for (int i = 0; i < array_size; i++)
{
a[i] = b[i] + scalar * c[i];
}
}
template <class T>
T OMPStream<T>::dot()
{
T sum = 0.0;
#ifdef OMP_TARGET_GPU
unsigned int array_size = this->array_size;
T *a = this->a;
T *b = this->b;
#pragma omp target teams distribute parallel for simd reduction(+:sum) map(tofrom: sum)
#else
#pragma omp parallel for reduction(+:sum)
#endif
for (int i = 0; i < array_size; i++)
{
sum += a[i] * b[i];
}
return sum;
}
void listDevices(void)
{
#ifdef OMP_TARGET_GPU
// Get number of devices
int count = omp_get_num_devices();
// Print device list
if (count == 0)
{
std::cerr << "No devices found." << std::endl;
}
else
{
std::cout << "There are " << count << " devices." << std::endl;
}
#else
std::cout << "0: CPU" << std::endl;
#endif
}
std::string getDeviceName(const int)
{
return std::string("Device name unavailable");
}
std::string getDeviceDriver(const int)
{
return std::string("Device driver unavailable");
}
template class OMPStream<float>;
template class OMPStream<double>;