forked from openai/gym
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathread_stats.py
54 lines (41 loc) · 1.44 KB
/
read_stats.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import glob
import json
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
from collections import deque
stats_files = []
for x in glob.glob('./monitoring/**/*.stats.json', recursive=True):
stats_files.append(x)
episode_rewards = []
for stats_file in stats_files:
json_data=open(stats_file).read()
data = json.loads(json_data)
episode_rewards.append((data['episode_rewards'], stats_file))
mean_stats = []
for stats, stats_file in episode_rewards:
all_datapoints = deque(maxlen=100)
mean_stat_datapoint = []
for datapoint in stats:
all_datapoints.append(datapoint)
mean_stat_datapoint.append(np.mean(all_datapoints))
mean_stats.append((mean_stat_datapoint, stats, stats_file))
legends = []
# for stats, stats_file in episode_rewards:
# mean = np.mean(stats)
# if mean > 65:
# plt.plot(stats, label=mean)
# legends.append(mean)
# else:
# print("Mean to low : {}".format(mean))
for mean_stats, stats, stats_file in mean_stats:
mean = mean_stats[len(mean_stats) - 1]
print("Mean too low. Mean:{}\tEpisodes:{}\tFile:{}".format(mean, len(mean_stats), stats_file))
if mean > 194 and len(mean_stats) < 3000:
plt.plot(mean_stats, label="{}".format(stats_file))
legends.append(stats_file)
# else:
# print("Mean too low. Mean:{}\tEpisodes:{}".format(mean, len(mean_stats)))
plt.legend(legends)
plt.tight_layout()
plt.show()