对于 final 域,编译器和处理器要遵守两个重排序规则。
- 在构造函数内对一个 final 域的写入,与随后把这个被构造对象的引用赋值给一个引用变量,这两个操作之间不能重排序。
- 初次读一个包含 final 域的对象的引用,与随后初次读这个 final 域,这两个操作之间不能重排序。
下面通过一些示例性的代码来分别说明这两个规则。
public class FinalExample {
int i; // 普通变量
final int j; // final变量
static FinalExample obj;
public FinalExample () { // 构造函数
i = 1; // 写普通域
j = 2; // 写 final 域
}
public static void writer () { // 写线程A执行
obj = new FinalExample ();
}
public static void reader () { // 读线程B执行
FinalExample object = obj; // 读对象引用
int a = object.i; // 读普通域
int b = object.j; // 读 final 域
}
}
这里假设一个线程A执行writer()方法,随后另一个线程B执行reader()方法。下面我们通过这两个线程的交互来说明这两个规则。
写 final 域的重排序规则禁止把 final 域的写重排序到构造函数之外。这个规则的实现包含下面2个方面。
- JMM禁止编译器把 final 域的写重排序到构造函数之外。
- 编译器会在 final 域的写之后,构造函数return之前,插入一个StoreStore屏障。这个屏障禁止处理器把 final 域的写重排序到构造函数之外。
现在让我们分析 writer() 方法。writer() 方法只包含一行代码:
finalExampl e=new FinalExample()。这行代码包含两个步骤,如下。
- 构造一个 FinalExample 类型的对象。
- 把这个对象的引用赋值给引用变量 obj。假设线程B读对象引用与读对象的成员域之间没有重排序(马上会说明为什么需要这个假设),下图是一种可能的执行时序。
在图中,写普通域的操作被编译器重排序到了构造函数之外,读线程B错误地读取了普通变量i初始化之前的值。而写 final 域的操作,被写 final 域的重排序规则“限定”在了构造函数之内,读线程B正确地读取了 final 变量初始化之后的值。
写 final 域的重排序规则可以确保:在对象引用为任意线程可见之前,对象的 final 域已经被正确初始化过了,而普通域不具有这个保障。以下图为例,在读线程B“看到”对象引用 obj 时,很可能 obj 对象还没有构造完成(对普通域i的写操作被重排序到构造函数外,此时初始值1还没有写入普通域i)。
读 final 域的重排序规则是,在一个线程中,初次读对象引用与初次读该对象包含的 final 域,JMM禁止处理器重排序这两个操作(注意,这个规则仅仅针对处理器)。编译器会在读 final 域操作的前面插入一个LoadLoad屏障。
初次读对象引用与初次读该对象包含的 final 域,这两个操作之间存在间接依赖关系。由于编译器遵守间接依赖关系,因此编译器不会重排序这两个操作。大多数处理器也会遵守间接依赖,也不会重排序这两个操作。但有少数处理器允许对存在间接依赖关系的操作做重排序(比如alpha处理器),这个规则就是专门用来针对这种处理器的。
reader()方法包含3个操作。
- 初次读引用变量 obj。
- 初次读引用变量 obj 指向对象的普通域j。
- 初次读引用变量 obj 指向对象的 final 域i。
现在假设写线程A没有发生任何重排序,同时程序在不遵守间接依赖的处理器上执行,下图所示是一种可能的执行时序。
在上图中,读对象的普通域的操作被处理器重排序到读对象引用之前。读普通域时,该域还没有被写线程 A 写入,这是一个错误的读取操作。而读 final 域的重排序规则会把读对象 final 域的操作“限定”在读对象引用之后,此时该 final 域已经被A线程初始化过了,这是一个正确的读取操作。
读 final 域的重排序规则可以确保:在读一个对象的 final 域之前,一定会先读包含这个 final 域的对象的引用。在这个示例程序中,如果该引用不为 null,那么引用对象的 final 域一定已经被A线程初始化过了
上面我们看到的 final 域是基础数据类型,如果 final 与是引用类型,将会有什么效果,请看下列示例代码:
public class FinalReferenceExample {
final int[] intArray; // final是引用类型
static FinalReferenceExample obj;
public FinalReferenceExample () { // 构造函数
intArray = new int[1]; // 1
intArray[0] = 1; // 2
}
public static void writerOne () { // 写线程A执行
obj = new FinalReferenceExample (); // 3
}
public static void writerTwo () { // 写线程B执行
obj.intArray[0] = 2; // 4
}
public static void reader () { // 读线程C执行
if (obj != null) { // 5
int temp1 = obj.intArray[0]; // 6
}
}
本例final域为一个引用类型,它引用一个int型的数组对象。对于引用类型,写final域的重排序规则对编译器和处理器增加了如下约束:在构造函数内对一个final引用的对象的成员域的写入,与随后在构造函数外把这个被构造对象的引用赋值给一个引用变量,这两个操作之间不能重排序。
对上面的示例程序,假设首先线程 A 执行 writerOne() 方法,执行完后线程 B 执行writerTwo() 方法,执行完后线程C 执行 reader() 方法。图3-31是一种可能的线程执行时序。
在图3-31中,1是对final域的写入,2是对这个final域引用的对象的成员域的写入,3是把被构造的对象的引用赋值给某个引用变量。这里除了前面提到的1不能和3重排序外,2和3也不能重排序。
JMM 可以确保读线程C至少能看到写线程A在构造函数中对 final 引用对象的成员域的写入。即C至少能看到数组下标0的值为1。而写线程B对数组元素的写入,读线程C可能看得到,也可能看不到。JMM不保证线程B的写入对读线程C可见,因为写线程B和读线程C之间存在数据竞争,此时的执行结果不可预知。
如果想要确保读线程C看到写线程B对数组元素的写入,写线程B和读线程C之间需要使用同步原语(lock或volatile)来确保内存可见性。
- 写 final 域的重排序规则禁止把 final 域的写重排序到构造函数之外
- 读 final 域的重排序规则是,在一个线程中,初次读对象引用与初次读该对象包含的 final 域,JMM禁止处理器重排序这两个操作(在读一个对象的 final 域之前,一定会先读包含这个 final 域的对象的引用)
- 对于引用类型的写 final 域额外增加了如下约束:在构造函数内对一个 final 引用的对象的成员域的写入,与随后在构造函数外把这个被构造对象的引用赋值给一个引用变量,这两个操作之间不能重排序(对 final 引用的对象的成员域的写入,一定在构造对象的引用赋值给一个引用变量之前)
final 域的重排序和构造函数息息相关。在构造函数内,所有对 final 域的操作(final域的初始化,final 是引用对象时,对其成员变量的写入)对其他线程都是可见的。但是,如果不在构造函数内,而且不是初次读(即final域的成员变量,在构造函数外被某个线程修改)的话,JMM不保证线程能看到final域的修改。如果想要确保读线程能看到其他写线程对 final 域的写入,写线程和读线程之间需要使用同步原语(lock或volatile)来确保内存可见性。