-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathvovnet.py
348 lines (298 loc) · 10.1 KB
/
vovnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from collections import OrderedDict
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddle3d.apis import manager
from paddle3d.models.layers import group_norm, FrozenBatchNorm2d, param_init
from paddle3d.utils import checkpoint
__all__ = ["VoVNet", "VoVNet99_eSE"]
norm_func = None
def dw_conv3x3(in_channels,
out_channels,
module_name,
postfix,
stride=1,
kernel_size=3,
padding=1):
"""3x3 convolution with padding"""
return nn.Sequential(
('{}_{}/dw_conv3x3'.format(module_name, postfix),
nn.Conv2D(
in_channels,
out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
groups=out_channels,
bias_attr=False)),
('{}_{}/pw_conv1x1'.format(module_name, postfix),
nn.Conv2D(
in_channels,
out_channels,
kernel_size=1,
stride=1,
padding=0,
groups=1,
bias_attr=False)),
('{}_{}/pw_norm'.format(module_name, postfix), norm_func(out_channels)),
('{}_{}/pw_relu'.format(module_name, postfix), nn.ReLU()))
def conv3x3(in_channels,
out_channels,
module_name,
postfix,
stride=1,
groups=1,
kernel_size=3,
padding=1):
"""3x3 convolution with padding"""
return nn.Sequential(
(f"{module_name}_{postfix}/conv",
nn.Conv2D(
in_channels,
out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
groups=groups,
bias_attr=False,
)), (f"{module_name}_{postfix}/norm", norm_func(out_channels)),
(f"{module_name}_{postfix}/relu", nn.ReLU()))
def conv1x1(in_channels,
out_channels,
module_name,
postfix,
stride=1,
groups=1,
kernel_size=1,
padding=0):
"""1x1 convolution with padding"""
return nn.Sequential(
(f"{module_name}_{postfix}/conv",
nn.Conv2D(
in_channels,
out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
groups=groups,
bias_attr=False,
)), (f"{module_name}_{postfix}/norm", norm_func(out_channels)),
(f"{module_name}_{postfix}/relu", nn.ReLU()))
class Hsigmoid(nn.Layer):
def __init__(self):
super(Hsigmoid, self).__init__()
def forward(self, x):
return F.relu6(x + 3.0) / 6.0
class eSEModule(nn.Layer):
def __init__(self, channel, reduction=4):
super(eSEModule, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2D(1)
self.fc = nn.Conv2D(channel, channel, kernel_size=1, padding=0)
self.hsigmoid = Hsigmoid()
def forward(self, x):
input = x
x = self.avg_pool(x)
x = self.fc(x)
x = self.hsigmoid(x)
return input * x
class _OSA_module(nn.Layer):
def __init__(self,
in_ch,
stage_ch,
concat_ch,
layer_per_block,
module_name,
SE=False,
identity=False,
depthwise=False):
super(_OSA_module, self).__init__()
self.identity = identity
self.depthwise = depthwise
self.isReduced = False
self.layers = nn.LayerList()
in_channel = in_ch
if self.depthwise and in_channel != stage_ch:
self.isReduced = True
self.conv_reduction = conv1x1(
in_channel, stage_ch, "{}_reduction".format(module_name), "0")
for i in range(layer_per_block):
if self.depthwise:
self.layers.append(
dw_conv3x3(stage_ch, stage_ch, module_name, i))
else:
self.layers.append(
conv3x3(in_channel, stage_ch, module_name, i))
in_channel = stage_ch
# feature aggregation
in_channel = in_ch + layer_per_block * stage_ch
self.concat = conv1x1(in_channel, concat_ch, module_name, "concat")
self.ese = eSEModule(concat_ch)
def forward(self, x):
identity_feat = x
output = []
output.append(x)
if self.depthwise and self.isReduced:
x = self.conv_reduction(x)
for layer in self.layers:
x = layer(x)
output.append(x)
x = paddle.concat(output, axis=1)
xt = self.concat(x)
xt = self.ese(xt)
if self.identity:
xt = xt + identity_feat
return xt
class _OSA_stage(nn.Sequential):
def __init__(self,
in_ch,
stage_ch,
concat_ch,
block_per_stage,
layer_per_block,
stage_num,
SE=False,
depthwise=False):
super(_OSA_stage, self).__init__()
if not stage_num == 2:
self.add_sublayer(
"Pooling", nn.MaxPool2D(
kernel_size=3, stride=2, ceil_mode=True))
if block_per_stage != 1:
SE = False
module_name = f"OSA{stage_num}_1"
self.add_sublayer(
module_name,
_OSA_module(
in_ch,
stage_ch,
concat_ch,
layer_per_block,
module_name,
SE,
depthwise=depthwise))
for i in range(block_per_stage - 1):
if i != block_per_stage - 2: # last block
SE = False
module_name = f"OSA{stage_num}_{i + 2}"
self.add_sublayer(
module_name,
_OSA_module(
concat_ch,
stage_ch,
concat_ch,
layer_per_block,
module_name,
SE,
identity=True,
depthwise=depthwise),
)
@manager.BACKBONES.add_component
class VoVNet(nn.Layer):
def __init__(self,
stem_ch,
config_stage_ch,
config_concat_ch,
block_per_stage,
layer_per_block,
depthwise,
SE,
norm_type,
input_ch,
out_features=None):
"""
Args:
input_ch(int) : the number of input channel
out_features (list[str]): name of the layers whose outputs should
be returned in forward. Can be anything in "stem", "stage2" ...
"""
super(VoVNet, self).__init__()
global norm_func
if norm_type == "bn" or norm_type is None:
norm_func = nn.BatchNorm2D
elif norm_type == "gn":
norm_func = group_norm
elif norm_type == "frozen_bn":
norm_func = FrozenBatchNorm2d
else:
raise NotImplementedError()
self._out_features = out_features
# Stem module
conv_type = dw_conv3x3 if depthwise else conv3x3
self.stem = nn.Sequential(('stem1',
conv3x3(input_ch, stem_ch[0], "stem", "1",
2)))
self.stem.add_sublayer(
'stem2', conv_type(stem_ch[0], stem_ch[1], "stem", "2", 1))
self.stem.add_sublayer(
'stem3', conv_type(stem_ch[1], stem_ch[2], "stem", "3", 2))
current_stirde = 4
self._out_feature_strides = {
"stem": current_stirde,
"stage2": current_stirde
}
self._out_feature_channels = {"stem": stem_ch[2]}
stem_out_ch = [stem_ch[2]]
in_ch_list = stem_out_ch + config_concat_ch[:-1]
# OSA stages
self.stage_names = []
for i in range(4): # num_stages
name = "stage%d" % (i + 2) # stage 2 ... stage 5
self.stage_names.append(name)
self.add_sublayer(
name,
_OSA_stage(
in_ch_list[i],
config_stage_ch[i],
config_concat_ch[i],
block_per_stage[i],
layer_per_block,
i + 2,
SE,
depthwise,
),
)
self._out_feature_channels[name] = config_concat_ch[i]
if not i == 0:
self._out_feature_strides[name] = current_stirde = int(
current_stirde * 2)
# initialize weights
self._initialize_weights()
def _initialize_weights(self):
for m in self.sublayers():
if isinstance(m, nn.Conv2D):
param_init.kaiming_normal_init(m.weight)
def forward(self, x):
outputs = []
x = self.stem(x)
if "stem" in self._out_features:
outputs.append(x)
for name in self.stage_names:
x = getattr(self, name)(x)
if name in self._out_features:
outputs.append(x)
return outputs
@manager.BACKBONES.add_component
def VoVNet99_eSE(**kwargs):
model = VoVNet(
stem_ch=[64, 64, 128],
config_stage_ch=[128, 160, 192, 224],
config_concat_ch=[256, 512, 768, 1024],
layer_per_block=5,
block_per_stage=[1, 3, 9, 3],
SE=True,
depthwise=False,
**kwargs)
return model