-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathcommon.py
632 lines (507 loc) · 30.8 KB
/
common.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
import os
import sys
import torch
import hashlib
from types import MethodType
from typing import List, Literal, Optional, Tuple
import transformers
from transformers import (
AutoConfig,
AutoModel,
AutoTokenizer,
HfArgumentParser,
Seq2SeqTrainingArguments,
BitsAndBytesConfig
)
from transformers.utils import check_min_version #从 transformers 库导入 check_min_version 函数,用于检查 transformers 库的版本是否满足最低要求。
from transformers.utils.versions import require_version #从 transformers 库导入 require_version 函数,用于检查特定库的版本是否满足要求。
from transformers.modeling_utils import PreTrainedModel
from transformers.tokenization_utils import PreTrainedTokenizer
import datasets #导入 datasets 库,该库包含大量的公开数据集和评估度量。
from datasets import Dataset, concatenate_datasets, load_dataset #从 datasets 库导入 Dataset 类、concatenate_datasets 函数和 load_dataset 函数。这些都用于处理数据集。
from peft import (
PeftModel,
TaskType,
LoraConfig,
get_peft_model
)
from peft.utils import CONFIG_NAME, WEIGHTS_NAME #从 peft 库的 utils 模块导入 CONFIG_NAME 和 WEIGHTS_NAME,这两个常量可能是用来指定模型配置和权重的文件名。
from trl import AutoModelForCausalLMWithValueHead #从 trl 库导入 AutoModelForCausalLMWithValueHead 类,用于生成一个带有值头的因果语言模型,这可能是进行强化学习训练的模型。
from .config import ( #从本地的 config 模块导入四个类,这些类定义了模型、训练、微调和生成等过程中的参数。
ModelArguments,
DataTrainingArguments,
FinetuningArguments,
GeneratingArguments
)
from .other import ( #从本地的 other 模块导入多个函数和常量,这些函数和常量用于日志记录、加载参数、打印参数、准备训练模型等。
get_logger,
load_trainable_params,
load_valuehead_params,
print_trainable_params,
prepare_model_for_training,
IGNORE_INDEX
)
check_min_version("4.27.4")
require_version("datasets>=2.10.0", "To fix: pip install datasets>=2.10.0")
require_version("accelerate>=0.19.0", "To fix: pip install accelerate>=0.19.0")
require_version("peft>=0.3.0", "To fix: pip install peft>=0.3.0")
require_version("trl>=0.4.4", "To fix: pip install trl>=0.4.4")
logger = get_logger(__name__)
def init_adapter( #定义函数 init_adapter,输入是模型、模型参数、微调参数和一个布尔值,输出是微调后的模型。
model: PreTrainedModel,
model_args: ModelArguments,
finetuning_args: FinetuningArguments,
is_trainable: bool
) -> PreTrainedModel:
r"""
Initializes the adapters.
Support full-parameter, freeze, P-Tuning v2 and LoRA training.
Note that the trainable parameters must be cast to float32.
"""
if finetuning_args.finetuning_type == "none" and is_trainable: #判断微调的类型,并根据微调的类型进行不同的处理。例如,如果微调类型为 "full",则将模型的所有参数转换为 float 类型;如果微调类型为 "freeze",则冻结一些层的参数;如果微调类型为 "p_tuning" 或 "lora",则通过特定的方式加载参数等。
raise ValueError("You cannot use finetuning_type=none while training.")
if finetuning_args.finetuning_type == "full":
logger.info("Fine-tuning method: Full")
model = model.float()
if finetuning_args.finetuning_type == "freeze":
logger.info("Fine-tuning method: Freeze")
for name, param in model.named_parameters():
if not any(trainable_layer in name for trainable_layer in finetuning_args.trainable_layers):
param.requires_grad_(False)
else:
param.data = param.data.to(torch.float32)
if model_args.checkpoint_dir is not None:
assert load_trainable_params(model, model_args.checkpoint_dir[0]), "Model checkpoint is not correctly loaded."
if finetuning_args.finetuning_type == "p_tuning":
logger.info("Fine-tuning method: P-Tuning v2")
if model_args.checkpoint_dir is not None: #检查并加载模型检查点。
assert load_trainable_params(model, model_args.checkpoint_dir[0]), "Model checkpoint is not correctly loaded."
if finetuning_args.finetuning_type == "lora": #判断微调的类型,并根据微调的类型进行不同的处理。例如,如果微调类型为 "full",则将模型的所有参数转换为 float 类型;如果微调类型为 "freeze",则冻结一些层的参数;如果微调类型为 "p_tuning" 或 "lora",则通过特定的方式加载参数等。
logger.info("Fine-tuning method: LoRA") #如果微调类型为 "lora",则进一步创建或加载 LoRA 权重。
lastest_checkpoint = None
if model_args.checkpoint_dir is not None: #最后,如果存在模型检查点,那么在日志中记录已加载的模型检查点信息,并返回微调后的模型。
assert os.path.exists(os.path.join(model_args.checkpoint_dir[0], WEIGHTS_NAME)), \
"Provided path ({}) does not contain a LoRA weight.".format(model_args.checkpoint_dir[0])
assert os.path.exists(os.path.join(model_args.checkpoint_dir[0], CONFIG_NAME)), \
"The given checkpoint may be not a LoRA checkpoint, please specify `--finetuning_type full/p_tuning/freeze` instead."
if is_trainable and model_args.resume_lora_training: # continually train on the lora weights
checkpoints_to_merge, lastest_checkpoint = model_args.checkpoint_dir[:-1], model_args.checkpoint_dir[-1]
else:
checkpoints_to_merge = model_args.checkpoint_dir
for checkpoint in checkpoints_to_merge:
model = PeftModel.from_pretrained(model, checkpoint)
model = model.merge_and_unload()
if len(checkpoints_to_merge) > 0:
logger.info("Merged {} model checkpoint(s).".format(len(checkpoints_to_merge)))
if lastest_checkpoint is not None: # resume lora training
model = PeftModel.from_pretrained(model, lastest_checkpoint, is_trainable=True)
if is_trainable and lastest_checkpoint is None: # create new lora weights while training
lora_config = LoraConfig(
task_type=TaskType.CAUSAL_LM, # we should regard ChatGLM as a causal LM
inference_mode=False,
r=finetuning_args.lora_rank,
lora_alpha=finetuning_args.lora_alpha,
lora_dropout=finetuning_args.lora_dropout,
target_modules=finetuning_args.lora_target
)
model = get_peft_model(model, lora_config)
if model_args.checkpoint_dir is not None:
logger.info("Loaded fine-tuned model from checkpoint(s): {}".format(",".join(model_args.checkpoint_dir)))
return model
def load_pretrained(
model_args: ModelArguments,
finetuning_args: FinetuningArguments,
is_trainable: Optional[bool] = False,
stage: Optional[Literal["sft", "rm", "ppo"]] = "sft"
) -> Tuple[PreTrainedModel, PreTrainedTokenizer]:
r"""
Loads pretrained model and tokenizer.
Support both training and inference.
"""
if (not is_trainable) and model_args.checkpoint_dir is None:
logger.warning("Checkpoint is not found at evaluation, load the original model.")
finetuning_args = FinetuningArguments(finetuning_type="none")
assert stage == "sft" or finetuning_args.finetuning_type == "lora", \
"RM and PPO training can only be performed with LoRA method."
quantization = None
if model_args.quantization_bit is not None:
if is_trainable:
if finetuning_args.finetuning_type == "full":
raise ValueError("Full-parameter fine-tuning does not support quantization.")
elif finetuning_args.finetuning_type == "p_tuning":
quantization = "cpm" # use cpm's quantization
else:
quantization = "bnb" # use bnb's quantization
else:
quantization = "cpm"
config_kwargs = {
"trust_remote_code": True,
"cache_dir": model_args.cache_dir,
"revision": model_args.model_revision,
"use_auth_token": True if model_args.use_auth_token else None,
}
tokenizer = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
use_fast=model_args.use_fast_tokenizer,
padding_side="left",
**config_kwargs
)
config = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path,
**config_kwargs
)
# P-Tuning v2 configurations. Use the built-in p-tuning method of ChatGLM.
if finetuning_args.finetuning_type == "p_tuning":
config.pre_seq_len = finetuning_args.pre_seq_len # enable this will fix other parameters automatically
config.prefix_projection = finetuning_args.prefix_projection
# Quantization configurations for Full, Freeze and LoRA in training (using bitsandbytes library).
if quantization == "bnb":
if model_args.quantization_bit == 8:
require_version("bitsandbytes>=0.37.0", "To fix: pip install bitsandbytes>=0.37.0")
config_kwargs["load_in_8bit"] = True
config_kwargs["quantization_config"] = BitsAndBytesConfig(
load_in_8bit=True,
llm_int8_threshold=6.0
)
elif model_args.quantization_bit == 4:
require_version("bitsandbytes>=0.39.0", "To fix: pip install bitsandbytes>=0.39.0")
require_version("transformers>=4.30.1", "To fix: pip install transformers>=4.30.1")
require_version("accelerate>=0.20.3", "To fix: pip install accelerate>=0.20.3")
require_version("peft>=0.4.0.dev0", "To fix: pip install git+https://github.com/huggingface/peft.git")
config_kwargs["load_in_4bit"] = True
config_kwargs["quantization_config"] = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=model_args.compute_dtype,
bnb_4bit_use_double_quant=model_args.double_quantization,
bnb_4bit_quant_type=model_args.quantization_type
)
config_kwargs["device_map"] = {"": int(os.environ.get("LOCAL_RANK") or 0)}
if model_args.checkpoint_dir is not None and finetuning_args.finetuning_type == "full":
model_to_load = model_args.checkpoint_dir[0]
else:
model_to_load = model_args.model_name_or_path
# Load and prepare pretrained models (without valuehead).
model = AutoModel.from_pretrained(model_to_load, config=config, **config_kwargs)
# Register auto class to save the custom code files.
if hasattr(config, "auto_map") and "AutoConfig" in config.auto_map:
config.__class__.register_for_auto_class()
if hasattr(config, "auto_map") and "AutoTokenizer" in config.auto_map:
tokenizer.__class__.register_for_auto_class()
if hasattr(config, "auto_map") and "AutoModel" in config.auto_map:
model.__class__.register_for_auto_class()
if model_args.use_v2:
assert tokenizer.eos_token_id is not None, "Please update the *.json and *.py files of ChatGLM2-6B from HuggingFace."
model.lm_head = model.transformer.output_layer
output_embedding_base_layer = model.transformer
output_embedding_layer_name = "output_layer"
else:
assert tokenizer.eos_token_id == 130005, "Please specify `use_v2` argument while using ChatGLM2-6B."
output_embedding_base_layer = model
output_embedding_layer_name = "lm_head"
# Initialize adapters
model = prepare_model_for_training(
model,
finetuning_args.finetuning_type,
output_embedding_base_layer,
output_embedding_layer_name
) if is_trainable else model
model = init_adapter(model, model_args, finetuning_args, is_trainable)
if not is_trainable:
model.requires_grad_(False) # fix all model params
model = model.half() # cast all params to float16 for inference
# Quantization with the built-in method for P-Tuning v2 training or evaluation.
# Model parameters should be cast to float16 in quantized P-Tuning setting.
if quantization == "cpm":
if is_trainable: # convert all params into half precision except prefix_encoder in training
for name, param in model.named_parameters():
if "prefix_encoder" not in name:
param.data = param.data.to(torch.float16)
model.quantize(model_args.quantization_bit) # built-in method in ChatGLM-6B, also an in-place operation
if quantization is not None:
logger.info("Quantized model to {} bit.".format(model_args.quantization_bit))
if stage == "rm" or stage == "ppo": # add value head
model = AutoModelForCausalLMWithValueHead.from_pretrained(model)
if stage == "rm" and model_args.checkpoint_dir is not None: # load valuehead weights to evaluate reward model
logger.warning("Only the last checkpoint containing valuehead will be loaded as the valuehead.")
if load_valuehead_params(model, model_args.checkpoint_dir[-1]):
model.v_head.load_state_dict({
"summary.weight": getattr(model, "reward_head_weight"),
"summary.bias": getattr(model, "reward_head_bias")
})
if stage == "ppo": # load reward model
assert is_trainable, "PPO stage cannot be performed at evaluation."
assert model_args.reward_model is not None, "Reward model is necessary for PPO training."
logger.info("Load reward model from {}".format(model_args.reward_model))
model.pretrained_model.load_adapter(model_args.reward_model, "reward", is_trainable=False)
assert load_valuehead_params(model, model_args.reward_model), "Reward model is not correctly loaded."
print_trainable_params(model)
return model, tokenizer
def prepare_args(
stage: Literal["sft", "rm", "ppo"]
) -> Tuple[ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments, FinetuningArguments]:
# 定义名为prepare_args的函数,接受一个名为stage的参数,并返回一个由四个对象组成的元组
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments, FinetuningArguments))
# 创建一个HfArgumentParser对象,用于解析命令行参数
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
# 如果命令行参数数量为2,并且第二个参数以".json"结尾
model_args, data_args, training_args, finetuning_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
# 解析第二个命令行参数指定的JSON文件中的参数
else:
model_args, data_args, training_args, finetuning_args = parser.parse_args_into_dataclasses()
# 直接解析命令行参数
if training_args.should_log:
# 如果training_args.should_log为True
transformers.utils.logging.set_verbosity_info()
# 设置Transformers库的日志级别为info
log_level = training_args.get_process_log_level()
datasets.utils.logging.set_verbosity(log_level)
transformers.utils.logging.set_verbosity(log_level)
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# 设置数据集和Transformers库的日志级别,并启用默认的日志处理程序和显式格式
assert stage == "sft" or (not training_args.predict_with_generate), \
"`predict_with_generate` cannot be set as True at PT, RM and PPO stages."
# 检查stage的值是否为"sft",或者当training_args.predict_with_generate为False时
assert not (training_args.do_train and training_args.predict_with_generate), \
"`predict_with_generate` cannot be set as True while training."
# 检查training_args.do_train和training_args.predict_with_generate是否都为False
assert (not training_args.do_predict) or training_args.predict_with_generate, \
"Please enable `predict_with_generate` to save model predictions."
# 检查training_args.do_predict是否为False或training_args.predict_with_generate是否为True
assert not (finetuning_args.finetuning_type == "p_tuning" and training_args.fp16), \
"Please disable fp16 training while using the P-Tuning v2 method."
# 检查finetuning_args.finetuning_type是否不为"p_tuning"或training_args.fp16是否为False
if model_args.quantization_bit is not None:
assert finetuning_args.finetuning_type != "full" and finetuning_args.finetuning_type != "freeze", \
"Quantization is incompatible with the full-parameter and freeze tuning."
# 检查如果启用了量化,finetuning_type不能为"full"或"freeze"
# 使用断言(assert)检查两个条件:finetuning_args.finetuning_type不能为"full"或"freeze"
# 第一个条件是:finetuning_args.finetuning_type != "full"
# 这意味着微调类型不能是"full",即不允许在完全微调模式下进行量化。
# 第二个条件是:finetuning_args.finetuning_type != "freeze"
# 这意味着微调类型不能是"freeze",即不允许在冻结微调模式下进行量化。
# 如果断言条件为False,即微调类型为"full"或"freeze",则会抛出一个 AssertionError 异常,其中包含"Quantization is incompatible with the full-parameter and freeze tuning."的错误消息。
if not training_args.do_train:
logger.warning("Evaluating model in 4/8-bit mode may cause lower scores.")
# 如果不进行训练,以4位/8位模式评估模型可能会导致较低的得分,显示警告
assert model_args.checkpoint_dir is None or finetuning_args.finetuning_type == "lora" \
or len(model_args.checkpoint_dir) == 1, "Only LoRA tuning accepts multiple checkpoints."
# 检查model_args.checkpoint_dir是否为None,或者当finetuning_args.finetuning_type为"lora"时,model_args.checkpoint_dir的长度是否为1
if training_args.do_train and (not training_args.fp16):
logger.warning("We recommend enable fp16 mixed precision training for ChatGLM-6B.")
if training_args.local_rank != -1 and training_args.ddp_find_unused_parameters is None:
logger.warning("`ddp_find_unused_parameters` needs to be set as False in DDP training.")
training_args.ddp_find_unused_parameters = False
training_args.optim = "adamw_torch" if training_args.optim == "adamw_hf" else training_args.optim # suppress warning
if model_args.quantization_bit is not None:
if training_args.fp16:
model_args.compute_dtype = torch.float16
elif training_args.bf16:
model_args.compute_dtype = torch.bfloat16
else:
model_args.compute_dtype = torch.float32
# Log on each process the small summary:
logger.info(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}\n"
+ f" distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
)
logger.info(f"Training/evaluation parameters {training_args}")
# Set seed before initializing model.
transformers.set_seed(training_args.seed)
return model_args, data_args, training_args, finetuning_args
def prepare_infer_args() -> Tuple[ModelArguments, FinetuningArguments, GeneratingArguments]:
parser = HfArgumentParser((ModelArguments, FinetuningArguments, GeneratingArguments))
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # Provide arguments with a json file.
model_args, finetuning_args, generating_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
else:
model_args, finetuning_args, generating_args = parser.parse_args_into_dataclasses()
assert model_args.checkpoint_dir is None or finetuning_args.finetuning_type == "lora" \
or len(model_args.checkpoint_dir) == 1, "Only LoRA tuning accepts multiple checkpoints."
return model_args, finetuning_args, generating_args
def prepare_data(
model_args: ModelArguments,
data_args: DataTrainingArguments
) -> Dataset:
def checksum(file_path, hash):
with open(file_path, "rb") as datafile:
binary_data = datafile.read()
sha1 = hashlib.sha1(binary_data).hexdigest()
if sha1 != hash:
logger.warning("Checksum failed for {}. It may vary depending on the platform.".format(file_path))
ext2type = {
"csv": "csv",
"json": "json",
"jsonl": "json"
}
max_samples = data_args.max_samples
all_datasets: List[Dataset] = [] # support multiple datasets
for dataset_attr in data_args.dataset_list:
logger.info("Loading dataset {}...".format(dataset_attr))
if dataset_attr.load_from == "hf_hub":
data_path = dataset_attr.dataset_name
data_files = None
elif dataset_attr.load_from == "script":
data_path = os.path.join(data_args.dataset_dir, dataset_attr.dataset_name)
data_files = None
elif dataset_attr.load_from == "file":
data_path = None
data_files: List[str] = []
if os.path.isdir(os.path.join(data_args.dataset_dir, dataset_attr.dataset_name)):
for file_name in os.listdir(os.path.join(data_args.dataset_dir, dataset_attr.dataset_name)):
data_files.append(os.path.join(data_args.dataset_dir, dataset_attr.dataset_name, file_name))
if data_path is None:
data_path = ext2type.get(data_files[0].split(".")[-1], None)
else:
assert ext2type.get(data_files[-1].split(".")[-1], None) == data_path, "file type does not match."
elif os.path.isfile(os.path.join(data_args.dataset_dir, dataset_attr.dataset_name)):
data_files.append(os.path.join(data_args.dataset_dir, dataset_attr.dataset_name))
data_path = ext2type.get(data_files[0].split(".")[-1], None)
else:
raise ValueError("File not found.")
assert data_path, "File extension must be csv, json or jsonl."
if len(data_files) == 1 and dataset_attr.dataset_sha1 is not None:
checksum(data_files[0], dataset_attr.dataset_sha1)
else:
logger.warning("Checksum failed: missing SHA-1 hash value in dataset_info.json or too many files.")
else:
raise NotImplementedError
raw_datasets = load_dataset(
data_path,
data_files=data_files,
cache_dir=model_args.cache_dir,
use_auth_token=True if model_args.use_auth_token else None
)
dataset = raw_datasets[data_args.split]
if max_samples is not None:
max_samples_temp = min(len(dataset), max_samples)
dataset = dataset.select(range(max_samples_temp))
dummy_data = [None] * len(dataset)
for column_name, target_name in [
("prompt_column", "prompt"),
("query_column", "query"),
("response_column", "response"),
("history_column", "history")
]: # every dataset will have 4 columns same as each other
if getattr(dataset_attr, column_name) != target_name:
if getattr(dataset_attr, column_name):
dataset = dataset.rename_column(getattr(dataset_attr, column_name), target_name)
else: # None or empty string
dataset = dataset.add_column(target_name, dummy_data)
all_datasets.append(dataset)
if len(data_args.dataset_list) == 1:
all_datasets = all_datasets[0]
else:
all_datasets = concatenate_datasets(all_datasets)
return all_datasets
def preprocess_data(
dataset: Dataset,
tokenizer: PreTrainedTokenizer,
data_args: DataTrainingArguments,
training_args: Seq2SeqTrainingArguments,
stage: Literal["sft", "rm", "ppo"]
) -> Dataset:
column_names = list(dataset.column_names)
prefix = data_args.source_prefix if data_args.source_prefix is not None else ""
def format_example(examples): # support question with a single answer or multiple answers
for i in range(len(examples["prompt"])):
if examples["prompt"][i] and examples["response"][i]:
query, answer = examples["prompt"][i], examples["response"][i]
query = query + examples["query"][i] if examples["query"][i] else query
history = examples["history"][i] if examples["history"][i] else []
prompt = ""
for j, (old_query, response) in enumerate(history):
prompt += "[Round {}]\n\n问:{}\n\n答:{}\n\n".format(j+1, old_query, response)
prompt += "[Round {}]\n\n问:{}\n\n答:".format(len(history)+1, query)
prompt = prefix + prompt
yield prompt, answer
def preprocess_supervised_dataset(examples):
# v1: build inputs with format `X [gMASK] <sop> Y <eop>` and labels with format `[IGNORE] ... [IGNORE] Y <eop>`
# v2: build inputs with format `[gMASK] sop X Y </s>` and labels with format `[IGNORE] ... [IGNORE] Y </s>`
model_inputs = {"input_ids": [], "labels": []}
for prompt, answer in format_example(examples):
source_ids = tokenizer.encode(text=prompt, add_special_tokens=False)
target_ids = tokenizer.encode(text=answer, add_special_tokens=False)
if len(source_ids) > data_args.max_source_length - 2: # gmask and sop tokens
source_ids = source_ids[:data_args.max_source_length - 2]
if len(target_ids) > data_args.max_target_length - 1: # eos token
target_ids = target_ids[:data_args.max_target_length - 1]
context_length = len(source_ids) + 2 # gmask and sop tokens
input_ids = tokenizer.build_inputs_with_special_tokens(source_ids, target_ids)
labels = [IGNORE_INDEX] * context_length + input_ids[context_length:]
model_inputs["input_ids"].append(input_ids)
model_inputs["labels"].append(labels)
return model_inputs
def preprocess_evaluation_dataset(examples):
# v1: build inputs with format `X [gMASK] <sop>` and labels with format `Y [gMASK] <sop>`
# v2: build inputs with format `[gMASK] sop X` and labels with format `[gMASK] sop Y`
model_inputs = {"input_ids": [], "labels": []}
for prompt, answer in format_example(examples):
source_ids = tokenizer.encode(text=prompt, add_special_tokens=False)
target_ids = tokenizer.encode(text=answer, add_special_tokens=False)
if len(source_ids) > data_args.max_source_length - 2: # gmask and sop tokens
source_ids = source_ids[:data_args.max_source_length - 2]
if len(target_ids) > data_args.max_target_length - 2: # gmask and sop tokens
target_ids = target_ids[:data_args.max_target_length - 2]
input_ids = tokenizer.build_inputs_with_special_tokens(source_ids)
labels = tokenizer.build_inputs_with_special_tokens(target_ids)
model_inputs["input_ids"].append(input_ids)
model_inputs["labels"].append(labels)
return model_inputs
def preprocess_pairwise_dataset(examples):
# v1: build input pairs with format `X [gMASK] <sop> Y1 <eop>` and `X [gMASK] <sop> Y2 <eop>`
# v2: build input pairs with format `[gMASK] sop X Y1 </s>` and `[gMASK] sop X Y2 </s>`
model_inputs = {"accept_ids": [], "reject_ids": []}
for prompt, answer in format_example(examples):
source_ids = tokenizer.encode(text=prompt, add_special_tokens=False)
accept_ids = tokenizer.encode(text=answer[0], add_special_tokens=False)
reject_ids = tokenizer.encode(text=answer[1], add_special_tokens=False)
if len(source_ids) > data_args.max_source_length - 2: # gmask and sop tokens
source_ids = source_ids[:data_args.max_source_length - 2]
if len(accept_ids) > data_args.max_target_length - 1: # eos token
accept_ids = accept_ids[:data_args.max_target_length - 1]
if len(reject_ids) > data_args.max_target_length - 1: # eos token
reject_ids = reject_ids[:data_args.max_target_length - 1]
accept_ids = tokenizer.build_inputs_with_special_tokens(source_ids[:], accept_ids) # avoid copying error
reject_ids = tokenizer.build_inputs_with_special_tokens(source_ids[:], reject_ids)
model_inputs["accept_ids"].append(accept_ids)
model_inputs["reject_ids"].append(reject_ids)
return model_inputs
def print_sft_dataset_example(example):
print("input_ids:\n{}".format(example["input_ids"]))
print("inputs:\n{}".format(tokenizer.decode(example["input_ids"], skip_special_tokens=False)))
print("label_ids:\n{}".format(example["labels"]))
print("labels:\n{}".format(
tokenizer.decode([d if d != IGNORE_INDEX else tokenizer.pad_token_id for d in example["labels"]],
skip_special_tokens=False)
))
def print_pairwise_dataset_example(example):
print("accept_ids:\n{}".format(example["accept_ids"]))
print("accepts:\n{}".format(tokenizer.decode(example["accept_ids"], skip_special_tokens=False)))
print("reject_ids:\n{}".format(example["reject_ids"]))
print("rejects:\n{}".format(tokenizer.decode(example["reject_ids"], skip_special_tokens=False)))
def print_ppo_dataset_example(example):
print("input_ids:\n{}".format(example["input_ids"]))
print("inputs:\n{}".format(tokenizer.decode(example["input_ids"], skip_special_tokens=False)))
if stage == "sft":
preprocess_function = preprocess_evaluation_dataset \
if training_args.predict_with_generate else preprocess_supervised_dataset
elif stage == "rm":
preprocess_function = preprocess_pairwise_dataset
elif stage == "ppo":
preprocess_function = preprocess_evaluation_dataset
with training_args.main_process_first(desc="dataset map pre-processing"):
dataset = dataset.map(
preprocess_function,
batched=True,
num_proc=data_args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not data_args.overwrite_cache,
desc="Running tokenizer on dataset"
)
if stage == "sft":
print_sft_dataset_example(dataset[0])
elif stage == "rm":
print_pairwise_dataset_example(dataset[0])
elif stage == "ppo":
print_ppo_dataset_example(dataset[0])
return dataset