-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathprocessing_utils.py
272 lines (225 loc) · 11.7 KB
/
processing_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Processing saving/loading class for common processors.
"""
import os
import warnings
from pathlib import Path
from typing import Optional, Union
from .dynamic_module_utils import custom_object_save
from .tokenization_utils_base import PreTrainedTokenizerBase
from .utils import PushToHubMixin, copy_func, direct_transformers_import, logging
logger = logging.get_logger(__name__)
# Dynamically import the Transformers module to grab the attribute classes of the processor form their names.
transformers_module = direct_transformers_import(Path(__file__).parent)
AUTO_TO_BASE_CLASS_MAPPING = {
"AutoTokenizer": "PreTrainedTokenizerBase",
"AutoFeatureExtractor": "FeatureExtractionMixin",
"AutoImageProcessor": "ImageProcessingMixin",
}
class ProcessorMixin(PushToHubMixin):
"""
This is a mixin used to provide saving/loading functionality for all processor classes.
"""
attributes = ["feature_extractor", "tokenizer"]
# Names need to be attr_class for attr in attributes
feature_extractor_class = None
tokenizer_class = None
_auto_class = None
# args have to match the attributes class attribute
def __init__(self, *args, **kwargs):
# Sanitize args and kwargs
for key in kwargs:
if key not in self.attributes:
raise TypeError(f"Unexpected keyword argument {key}.")
for arg, attribute_name in zip(args, self.attributes):
if attribute_name in kwargs:
raise TypeError(f"Got multiple values for argument {attribute_name}.")
else:
kwargs[attribute_name] = arg
if len(kwargs) != len(self.attributes):
raise ValueError(
f"This processor requires {len(self.attributes)} arguments: {', '.join(self.attributes)}. Got "
f"{len(args)} arguments instead."
)
# Check each arg is of the proper class (this will also catch a user initializing in the wrong order)
for attribute_name, arg in kwargs.items():
class_name = getattr(self, f"{attribute_name}_class")
# Nothing is ever going to be an instance of "AutoXxx", in that case we check the base class.
class_name = AUTO_TO_BASE_CLASS_MAPPING.get(class_name, class_name)
if isinstance(class_name, tuple):
proper_class = tuple(getattr(transformers_module, n) for n in class_name if n is not None)
else:
proper_class = getattr(transformers_module, class_name)
if not isinstance(arg, proper_class):
raise ValueError(
f"Received a {type(arg).__name__} for argument {attribute_name}, but a {class_name} was expected."
)
setattr(self, attribute_name, arg)
def __repr__(self):
attributes_repr = [f"- {name}: {repr(getattr(self, name))}" for name in self.attributes]
attributes_repr = "\n".join(attributes_repr)
return f"{self.__class__.__name__}:\n{attributes_repr}"
def save_pretrained(self, save_directory, push_to_hub: bool = False, **kwargs):
"""
Saves the attributes of this processor (feature extractor, tokenizer...) in the specified directory so that it
can be reloaded using the [`~ProcessorMixin.from_pretrained`] method.
<Tip>
This class method is simply calling [`~feature_extraction_utils.FeatureExtractionMixin.save_pretrained`] and
[`~tokenization_utils_base.PreTrainedTokenizerBase.save_pretrained`]. Please refer to the docstrings of the
methods above for more information.
</Tip>
Args:
save_directory (`str` or `os.PathLike`):
Directory where the feature extractor JSON file and the tokenizer files will be saved (directory will
be created if it does not exist).
push_to_hub (`bool`, *optional*, defaults to `False`):
Whether or not to push your model to the Hugging Face model hub after saving it. You can specify the
repository you want to push to with `repo_id` (will default to the name of `save_directory` in your
namespace).
kwargs:
Additional key word arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method.
"""
os.makedirs(save_directory, exist_ok=True)
if push_to_hub:
commit_message = kwargs.pop("commit_message", None)
repo_id = kwargs.pop("repo_id", save_directory.split(os.path.sep)[-1])
repo_id = self._create_repo(repo_id, **kwargs)
files_timestamps = self._get_files_timestamps(save_directory)
# If we have a custom config, we copy the file defining it in the folder and set the attributes so it can be
# loaded from the Hub.
if self._auto_class is not None:
attrs = [getattr(self, attribute_name) for attribute_name in self.attributes]
configs = [(a.init_kwargs if isinstance(a, PreTrainedTokenizerBase) else a) for a in attrs]
custom_object_save(self, save_directory, config=configs)
for attribute_name in self.attributes:
attribute = getattr(self, attribute_name)
# Include the processor class in the attribute config so this processor can then be reloaded with the
# `AutoProcessor` API.
if hasattr(attribute, "_set_processor_class"):
attribute._set_processor_class(self.__class__.__name__)
attribute.save_pretrained(save_directory)
if self._auto_class is not None:
# We added an attribute to the init_kwargs of the tokenizers, which needs to be cleaned up.
for attribute_name in self.attributes:
attribute = getattr(self, attribute_name)
if isinstance(attribute, PreTrainedTokenizerBase):
del attribute.init_kwargs["auto_map"]
if push_to_hub:
self._upload_modified_files(
save_directory,
repo_id,
files_timestamps,
commit_message=commit_message,
token=kwargs.get("use_auth_token"),
)
@classmethod
def from_pretrained(
cls,
pretrained_model_name_or_path: Union[str, os.PathLike],
cache_dir: Optional[Union[str, os.PathLike]] = None,
force_download: bool = False,
local_files_only: bool = False,
token: Optional[Union[str, bool]] = None,
revision: str = "main",
**kwargs,
):
r"""
Instantiate a processor associated with a pretrained model.
<Tip>
This class method is simply calling the feature extractor
[`~feature_extraction_utils.FeatureExtractionMixin.from_pretrained`], image processor
[`~image_processing_utils.ImageProcessingMixin`] and the tokenizer
[`~tokenization_utils_base.PreTrainedTokenizer.from_pretrained`] methods. Please refer to the docstrings of the
methods above for more information.
</Tip>
Args:
pretrained_model_name_or_path (`str` or `os.PathLike`):
This can be either:
- a string, the *model id* of a pretrained feature_extractor hosted inside a model repo on
huggingface.co. Valid model ids can be located at the root-level, like `bert-base-uncased`, or
namespaced under a user or organization name, like `dbmdz/bert-base-german-cased`.
- a path to a *directory* containing a feature extractor file saved using the
[`~SequenceFeatureExtractor.save_pretrained`] method, e.g., `./my_model_directory/`.
- a path or url to a saved feature extractor JSON *file*, e.g.,
`./my_model_directory/preprocessor_config.json`.
**kwargs
Additional keyword arguments passed along to both
[`~feature_extraction_utils.FeatureExtractionMixin.from_pretrained`] and
[`~tokenization_utils_base.PreTrainedTokenizer.from_pretrained`].
"""
kwargs["cache_dir"] = cache_dir
kwargs["force_download"] = force_download
kwargs["local_files_only"] = local_files_only
kwargs["revision"] = revision
use_auth_token = kwargs.pop("use_auth_token", None)
if use_auth_token is not None:
warnings.warn(
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers.", FutureWarning
)
if token is not None:
raise ValueError(
"`token` and `use_auth_token` are both specified. Please set only the argument `token`."
)
token = use_auth_token
if token is not None:
# change to `token` in a follow-up PR
kwargs["use_auth_token"] = token
args = cls._get_arguments_from_pretrained(pretrained_model_name_or_path, **kwargs)
return cls(*args)
@classmethod
def register_for_auto_class(cls, auto_class="AutoProcessor"):
"""
Register this class with a given auto class. This should only be used for custom feature extractors as the ones
in the library are already mapped with `AutoProcessor`.
<Tip warning={true}>
This API is experimental and may have some slight breaking changes in the next releases.
</Tip>
Args:
auto_class (`str` or `type`, *optional*, defaults to `"AutoProcessor"`):
The auto class to register this new feature extractor with.
"""
if not isinstance(auto_class, str):
auto_class = auto_class.__name__
import transformers.models.auto as auto_module
if not hasattr(auto_module, auto_class):
raise ValueError(f"{auto_class} is not a valid auto class.")
cls._auto_class = auto_class
@classmethod
def _get_arguments_from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
args = []
for attribute_name in cls.attributes:
class_name = getattr(cls, f"{attribute_name}_class")
if isinstance(class_name, tuple):
classes = tuple(getattr(transformers_module, n) if n is not None else None for n in class_name)
use_fast = kwargs.get("use_fast", True)
if use_fast and classes[1] is not None:
attribute_class = classes[1]
else:
attribute_class = classes[0]
else:
attribute_class = getattr(transformers_module, class_name)
args.append(attribute_class.from_pretrained(pretrained_model_name_or_path, **kwargs))
return args
@property
def model_input_names(self):
first_attribute = getattr(self, self.attributes[0])
return getattr(first_attribute, "model_input_names", None)
ProcessorMixin.push_to_hub = copy_func(ProcessorMixin.push_to_hub)
if ProcessorMixin.push_to_hub.__doc__ is not None:
ProcessorMixin.push_to_hub.__doc__ = ProcessorMixin.push_to_hub.__doc__.format(
object="processor", object_class="AutoProcessor", object_files="processor files"
)