-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathnodes.py
369 lines (307 loc) · 17 KB
/
nodes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
import sys
import os
import itertools
import numpy as np
from tqdm.auto import tqdm
import torch
sys.path.insert(0, os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy"))
import comfy.sd
import comfy.controlnet
import comfy.model_management
import comfy.sample
import comfy.sampler_helpers
from . import tiling
import latent_preview
MAX_RESOLUTION=8192
def recursion_to_list(obj, attr):
current = obj
yield current
while True:
current = getattr(current, attr, None)
if current is not None:
yield current
else:
return
def copy_cond(cond):
return [[c1,c2.copy()] for c1,c2 in cond]
def slice_cond(tile_h, tile_h_len, tile_w, tile_w_len, cond, area):
tile_h_end = tile_h + tile_h_len
tile_w_end = tile_w + tile_w_len
coords = area[0] #h_len, w_len, h, w,
mask = area[1]
if coords is not None:
h_len, w_len, h, w = coords
h_end = h + h_len
w_end = w + w_len
if h < tile_h_end and h_end > tile_h and w < tile_w_end and w_end > tile_w:
new_h = max(0, h - tile_h)
new_w = max(0, w - tile_w)
new_h_end = min(tile_h_end, h_end - tile_h)
new_w_end = min(tile_w_end, w_end - tile_w)
cond[1]['area'] = (new_h_end - new_h, new_w_end - new_w, new_h, new_w)
else:
return (cond, True)
if mask is not None:
new_mask = tiling.get_slice(mask, tile_h,tile_h_len,tile_w,tile_w_len)
if new_mask.sum().cpu() == 0.0 and 'mask' in cond[1]:
return (cond, True)
else:
cond[1]['mask'] = new_mask
return (cond, False)
def slice_gligen(tile_h, tile_h_len, tile_w, tile_w_len, cond, gligen):
tile_h_end = tile_h + tile_h_len
tile_w_end = tile_w + tile_w_len
if gligen is None:
return
gligen_type = gligen[0]
gligen_model = gligen[1]
gligen_areas = gligen[2]
gligen_areas_new = []
for emb, h_len, w_len, h, w in gligen_areas:
h_end = h + h_len
w_end = w + w_len
if h < tile_h_end and h_end > tile_h and w < tile_w_end and w_end > tile_w:
new_h = max(0, h - tile_h)
new_w = max(0, w - tile_w)
new_h_end = min(tile_h_end, h_end - tile_h)
new_w_end = min(tile_w_end, w_end - tile_w)
gligen_areas_new.append((emb, new_h_end - new_h, new_w_end - new_w, new_h, new_w))
if len(gligen_areas_new) == 0:
del cond['gligen']
else:
cond['gligen'] = (gligen_type, gligen_model, gligen_areas_new)
def slice_cnet(h, h_len, w, w_len, model:comfy.controlnet.ControlBase, img):
if img is None:
img = model.cond_hint_original
hint = tiling.get_slice(img, h*8, h_len*8, w*8, w_len*8)
if isinstance(model, comfy.controlnet.ControlLora):
model.cond_hint = hint.float().to(model.device)
else:
model.cond_hint = hint.to(model.control_model.dtype).to(model.device)
def slices_T2I(h, h_len, w, w_len, model:comfy.controlnet.ControlBase, img):
model.control_input = None
if img is None:
img = model.cond_hint_original
model.cond_hint = tiling.get_slice(img, h*8, h_len*8, w*8, w_len*8).float().to(model.device)
# TODO: refactor some of the mess
from PIL import Image
def sample_common(model, add_noise, noise_seed, tile_width, tile_height, tiling_strategy, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, start_at_step, end_at_step, return_with_leftover_noise, denoise=1.0, preview=False):
end_at_step = min(end_at_step, steps)
device = comfy.model_management.get_torch_device()
samples = latent_image["samples"]
noise_mask = latent_image["noise_mask"] if "noise_mask" in latent_image else None
force_full_denoise = return_with_leftover_noise == "enable"
if add_noise == "disable":
noise = torch.zeros(samples.size(), dtype=samples.dtype, layout=samples.layout, device="cpu")
else:
skip = latent_image["batch_index"] if "batch_index" in latent_image else None
noise = comfy.sample.prepare_noise(samples, noise_seed, skip)
if noise_mask is not None:
noise_mask = comfy.sample.prepare_mask(noise_mask, noise.shape, device='cpu')
shape = samples.shape
samples = samples.clone()
tile_width = min(shape[-1] * 8, tile_width)
tile_height = min(shape[2] * 8, tile_height)
conds0 = \
{"positive": comfy.sampler_helpers.convert_cond(positive),
"negative": comfy.sampler_helpers.convert_cond(negative)}
conds = {}
for k in conds0:
conds[k] = list(map(lambda a: a.copy(), conds0[k]))
modelPatches, inference_memory = comfy.sampler_helpers.get_additional_models(conds, model.model_dtype())
comfy.model_management.load_models_gpu([model] + modelPatches, model.memory_required(noise.shape) + inference_memory)
real_model = model.model
sampler = comfy.samplers.KSampler(model, steps=steps, device=device, sampler=sampler_name, scheduler=scheduler, denoise=denoise, model_options=model.model_options)
if tiling_strategy != 'padded':
if noise_mask is not None:
samples += sampler.sigmas[start_at_step].cpu() * noise_mask * model.model.process_latent_out(noise)
else:
samples += sampler.sigmas[start_at_step].cpu() * model.model.process_latent_out(noise)
# cnets
cnets = [c['control'] for (_, c) in positive + negative if 'control' in c]
# unroll recursion
cnets = list(set([x for m in cnets for x in recursion_to_list(m, "previous_controlnet")]))
# filter down to only cnets
cnets = [x for x in cnets if isinstance(x, comfy.controlnet.ControlNet)]
cnet_imgs = [
torch.nn.functional.interpolate(m.cond_hint_original, (shape[-2] * 8, shape[-1] * 8), mode='nearest-exact').to('cpu')
if m.cond_hint_original.shape[-2] != shape[-2] * 8 or m.cond_hint_original.shape[-1] != shape[-1] * 8 else None
for m in cnets]
# T2I
T2Is = [c['control'] for (_, c) in positive + negative if 'control' in c]
# unroll recursion
T2Is = [x for m in T2Is for x in recursion_to_list(m, "previous_controlnet")]
# filter down to only T2I
T2Is = [x for x in T2Is if isinstance(x, comfy.controlnet.T2IAdapter)]
T2I_imgs = [
torch.nn.functional.interpolate(m.cond_hint_original, (shape[-2] * 8, shape[-1] * 8), mode='nearest-exact').to('cpu')
if m.cond_hint_original.shape[-2] != shape[-2] * 8 or m.cond_hint_original.shape[-1] != shape[-1] * 8 or (m.channels_in == 1 and m.cond_hint_original.shape[1] != 1) else None
for m in T2Is
]
T2I_imgs = [
torch.mean(img, 1, keepdim=True) if img is not None and m.channels_in == 1 and m.cond_hint_original.shape[1] else img
for m, img in zip(T2Is, T2I_imgs)
]
#cond area and mask
spatial_conds_pos = [
(c[1]['area'] if 'area' in c[1] else None,
comfy.sample.prepare_mask(c[1]['mask'], shape, device) if 'mask' in c[1] else None)
for c in positive
]
spatial_conds_neg = [
(c[1]['area'] if 'area' in c[1] else None,
comfy.sample.prepare_mask(c[1]['mask'], shape, device) if 'mask' in c[1] else None)
for c in negative
]
#gligen
gligen_pos = [
c[1]['gligen'] if 'gligen' in c[1] else None
for c in positive
]
gligen_neg = [
c[1]['gligen'] if 'gligen' in c[1] else None
for c in negative
]
gen = torch.manual_seed(noise_seed)
if tiling_strategy == 'random' or tiling_strategy == 'random strict':
tiles = tiling.get_tiles_and_masks_rgrid(end_at_step - start_at_step, samples.shape, tile_height, tile_width, gen)
elif tiling_strategy == 'padded':
tiles = tiling.get_tiles_and_masks_padded(end_at_step - start_at_step, samples.shape, tile_height, tile_width)
else:
tiles = tiling.get_tiles_and_masks_simple(end_at_step - start_at_step, samples.shape, tile_height, tile_width)
total_steps = sum([num_steps for img_pass in tiles for steps_list in img_pass for _,_,_,_,num_steps,_ in steps_list])
current_step = [0]
preview_format = "JPEG"
if preview_format not in ["JPEG", "PNG"]:
preview_format = "JPEG"
previewer = None
if preview:
previewer = latent_preview.get_previewer(device, model.model.latent_format)
with tqdm(total=total_steps) as pbar_tqdm:
pbar = comfy.utils.ProgressBar(total_steps)
def callback(step, x0, x, total_steps):
current_step[0] += 1
preview_bytes = None
if previewer:
preview_bytes = previewer.decode_latent_to_preview_image(preview_format, x0)
pbar.update_absolute(current_step[0], preview=preview_bytes)
pbar_tqdm.update(1)
if tiling_strategy == "random strict":
samples_next = samples.clone()
for img_pass in tiles:
for i in range(len(img_pass)):
for tile_h, tile_h_len, tile_w, tile_w_len, tile_steps, tile_mask in img_pass[i]:
tiled_mask = None
if noise_mask is not None:
tiled_mask = tiling.get_slice(noise_mask, tile_h, tile_h_len, tile_w, tile_w_len).to(device)
if tile_mask is not None:
if tiled_mask is not None:
tiled_mask *= tile_mask.to(device)
else:
tiled_mask = tile_mask.to(device)
if tiling_strategy == 'padded' or tiling_strategy == 'random strict':
tile_h, tile_h_len, tile_w, tile_w_len, tiled_mask = tiling.mask_at_boundary( tile_h, tile_h_len, tile_w, tile_w_len,
tile_height, tile_width, samples.shape[-2], samples.shape[-1],
tiled_mask, device)
if tiled_mask is not None and tiled_mask.sum().cpu() == 0.0:
continue
tiled_latent = tiling.get_slice(samples, tile_h, tile_h_len, tile_w, tile_w_len).to(device)
if tiling_strategy == 'padded':
tiled_noise = tiling.get_slice(noise, tile_h, tile_h_len, tile_w, tile_w_len).to(device)
else:
if tiled_mask is None or noise_mask is None:
tiled_noise = torch.zeros_like(tiled_latent)
else:
tiled_noise = tiling.get_slice(noise, tile_h, tile_h_len, tile_w, tile_w_len).to(device) * (1 - tiled_mask)
#TODO: all other condition based stuff like area sets and GLIGEN should also happen here
#cnets
for m, img in zip(cnets, cnet_imgs):
slice_cnet(tile_h, tile_h_len, tile_w, tile_w_len, m, img)
#T2I
for m, img in zip(T2Is, T2I_imgs):
slices_T2I(tile_h, tile_h_len, tile_w, tile_w_len, m, img)
pos = [c.copy() for c in positive]#copy_cond(positive_copy)
neg = [c.copy() for c in negative]#copy_cond(negative_copy)
#cond areas
pos = [slice_cond(tile_h, tile_h_len, tile_w, tile_w_len, c, area) for c, area in zip(pos, spatial_conds_pos)]
pos = [c for c, ignore in pos if not ignore]
neg = [slice_cond(tile_h, tile_h_len, tile_w, tile_w_len, c, area) for c, area in zip(neg, spatial_conds_neg)]
neg = [c for c, ignore in neg if not ignore]
#gligen
for cond, gligen in zip(pos, gligen_pos):
slice_gligen(tile_h, tile_h_len, tile_w, tile_w_len, cond, gligen)
for cond, gligen in zip(neg, gligen_neg):
slice_gligen(tile_h, tile_h_len, tile_w, tile_w_len, cond, gligen)
tile_result = sampler.sample(tiled_noise, pos, neg, cfg=cfg, latent_image=tiled_latent, start_step=start_at_step + i * tile_steps, last_step=start_at_step + i*tile_steps + tile_steps, force_full_denoise=force_full_denoise and i+1 == end_at_step - start_at_step, denoise_mask=tiled_mask, callback=callback, disable_pbar=True, seed=noise_seed)
tile_result = tile_result.cpu()
if tiled_mask is not None:
tiled_mask = tiled_mask.cpu()
if tiling_strategy == "random strict":
tiling.set_slice(samples_next, tile_result, tile_h, tile_h_len, tile_w, tile_w_len, tiled_mask)
else:
tiling.set_slice(samples, tile_result, tile_h, tile_h_len, tile_w, tile_w_len, tiled_mask)
if tiling_strategy == "random strict":
samples = samples_next.clone()
comfy.sampler_helpers.cleanup_additional_models(modelPatches)
out = latent_image.copy()
out["samples"] = samples.cpu()
return (out, )
class TiledKSampler:
@classmethod
def INPUT_TYPES(s):
return {"required":
{"model": ("MODEL",),
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
"tile_width": ("INT", {"default": 512, "min": 256, "max": MAX_RESOLUTION, "step": 64}),
"tile_height": ("INT", {"default": 512, "min": 256, "max": MAX_RESOLUTION, "step": 64}),
"tiling_strategy": (["random", "random strict", "padded", 'simple'], ),
"steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
"cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
"sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
"scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
"positive": ("CONDITIONING", ),
"negative": ("CONDITIONING", ),
"latent_image": ("LATENT", ),
"denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
}}
RETURN_TYPES = ("LATENT",)
FUNCTION = "sample"
CATEGORY = "sampling"
def sample(self, model, seed, tile_width, tile_height, tiling_strategy, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise):
steps_total = int(steps / denoise)
return sample_common(model, 'enable', seed, tile_width, tile_height, tiling_strategy, steps_total, cfg, sampler_name, scheduler, positive, negative, latent_image, steps_total-steps, steps_total, 'disable', denoise=1.0, preview=True)
class TiledKSamplerAdvanced:
@classmethod
def INPUT_TYPES(s):
return {"required":
{"model": ("MODEL",),
"add_noise": (["enable", "disable"], ),
"noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
"tile_width": ("INT", {"default": 512, "min": 256, "max": MAX_RESOLUTION, "step": 64}),
"tile_height": ("INT", {"default": 512, "min": 256, "max": MAX_RESOLUTION, "step": 64}),
"tiling_strategy": (["random", "random strict", "padded", 'simple'], ),
"steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
"cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
"sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
"scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
"positive": ("CONDITIONING", ),
"negative": ("CONDITIONING", ),
"latent_image": ("LATENT", ),
"start_at_step": ("INT", {"default": 0, "min": 0, "max": 10000}),
"end_at_step": ("INT", {"default": 10000, "min": 0, "max": 10000}),
"return_with_leftover_noise": (["disable", "enable"], ),
"preview": (["disable", "enable"], ),
}}
RETURN_TYPES = ("LATENT",)
FUNCTION = "sample"
CATEGORY = "sampling"
def sample(self, model, add_noise, noise_seed, tile_width, tile_height, tiling_strategy, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, start_at_step, end_at_step, return_with_leftover_noise, preview, denoise=1.0):
return sample_common(model, add_noise, noise_seed, tile_width, tile_height, tiling_strategy, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, start_at_step, end_at_step, return_with_leftover_noise, denoise=1.0, preview= preview == 'enable')
NODE_CLASS_MAPPINGS = {
"BNK_TiledKSamplerAdvanced": TiledKSamplerAdvanced,
"BNK_TiledKSampler": TiledKSampler,
}
NODE_DISPLAY_NAME_MAPPINGS = {
"BNK_TiledKSamplerAdvanced": "TiledK Sampler (Advanced)",
"BNK_TiledKSampler": "Tiled KSampler",
}