-
-
Notifications
You must be signed in to change notification settings - Fork 1
/
emitnative.c
2993 lines (2667 loc) · 124 KB
/
emitnative.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2013, 2014 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
// Essentially normal Python has 1 type: Python objects
// Viper has more than 1 type, and is just a more complicated (a superset of) Python.
// If you declare everything in Viper as a Python object (ie omit type decls) then
// it should in principle be exactly the same as Python native.
// Having types means having more opcodes, like binary_op_nat_nat, binary_op_nat_obj etc.
// In practice we won't have a VM but rather do this in asm which is actually very minimal.
// Because it breaks strict Python equivalence it should be a completely separate
// decorator. It breaks equivalence because overflow on integers wraps around.
// It shouldn't break equivalence if you don't use the new types, but since the
// type decls might be used in normal Python for other reasons, it's probably safest,
// cleanest and clearest to make it a separate decorator.
// Actually, it does break equivalence because integers default to native integers,
// not Python objects.
// for x in l[0:8]: can be compiled into a native loop if l has pointer type
#include <stdio.h>
#include <string.h>
#include <assert.h>
#include "py/emit.h"
#include "py/nativeglue.h"
#include "py/objfun.h"
#include "py/objstr.h"
#if MICROPY_DEBUG_VERBOSE // print debugging info
#define DEBUG_PRINT (1)
#define DEBUG_printf DEBUG_printf
#else // don't print debugging info
#define DEBUG_printf(...) (void)0
#endif
// wrapper around everything in this file
#if N_X64 || N_X86 || N_THUMB || N_ARM || N_XTENSA || N_XTENSAWIN
// C stack layout for native functions:
// 0: nlr_buf_t [optional]
// return_value [optional word]
// exc_handler_unwind [optional word]
// emit->code_state_start: mp_code_state_native_t
// emit->stack_start: Python object stack | emit->n_state
// locals (reversed, L0 at end) |
//
// C stack layout for native generator functions:
// 0=emit->stack_start: nlr_buf_t
// return_value
// exc_handler_unwind [optional word]
//
// Then REG_GENERATOR_STATE points to:
// 0=emit->code_state_start: mp_code_state_native_t
// emit->stack_start: Python object stack | emit->n_state
// locals (reversed, L0 at end) |
//
// C stack layout for viper functions:
// 0: nlr_buf_t [optional]
// return_value [optional word]
// exc_handler_unwind [optional word]
// emit->code_state_start: fun_obj, old_globals [optional]
// emit->stack_start: Python object stack | emit->n_state
// locals (reversed, L0 at end) |
// (L0-L2 may be in regs instead)
// Native emitter needs to know the following sizes and offsets of C structs (on the target):
#if MICROPY_DYNAMIC_COMPILER
#define SIZEOF_NLR_BUF (2 + mp_dynamic_compiler.nlr_buf_num_regs + 1) // the +1 is conservative in case MICROPY_ENABLE_PYSTACK enabled
#else
#define SIZEOF_NLR_BUF (sizeof(nlr_buf_t) / sizeof(uintptr_t))
#endif
#define SIZEOF_CODE_STATE (sizeof(mp_code_state_native_t) / sizeof(uintptr_t))
#define OFFSETOF_CODE_STATE_STATE (offsetof(mp_code_state_native_t, state) / sizeof(uintptr_t))
#define OFFSETOF_CODE_STATE_FUN_BC (offsetof(mp_code_state_native_t, fun_bc) / sizeof(uintptr_t))
#define OFFSETOF_CODE_STATE_IP (offsetof(mp_code_state_native_t, ip) / sizeof(uintptr_t))
#define OFFSETOF_CODE_STATE_SP (offsetof(mp_code_state_native_t, sp) / sizeof(uintptr_t))
#define OFFSETOF_CODE_STATE_N_STATE (offsetof(mp_code_state_native_t, n_state) / sizeof(uintptr_t))
#define OFFSETOF_OBJ_FUN_BC_CONTEXT (offsetof(mp_obj_fun_bc_t, context) / sizeof(uintptr_t))
#define OFFSETOF_OBJ_FUN_BC_CHILD_TABLE (offsetof(mp_obj_fun_bc_t, child_table) / sizeof(uintptr_t))
#define OFFSETOF_OBJ_FUN_BC_BYTECODE (offsetof(mp_obj_fun_bc_t, bytecode) / sizeof(uintptr_t))
#define OFFSETOF_MODULE_CONTEXT_QSTR_TABLE (offsetof(mp_module_context_t, constants.qstr_table) / sizeof(uintptr_t))
#define OFFSETOF_MODULE_CONTEXT_OBJ_TABLE (offsetof(mp_module_context_t, constants.obj_table) / sizeof(uintptr_t))
#define OFFSETOF_MODULE_CONTEXT_GLOBALS (offsetof(mp_module_context_t, module.globals) / sizeof(uintptr_t))
// If not already defined, set parent args to same as child call registers
#ifndef REG_PARENT_RET
#define REG_PARENT_RET REG_RET
#define REG_PARENT_ARG_1 REG_ARG_1
#define REG_PARENT_ARG_2 REG_ARG_2
#define REG_PARENT_ARG_3 REG_ARG_3
#define REG_PARENT_ARG_4 REG_ARG_4
#endif
// Word index of nlr_buf_t.ret_val
#define NLR_BUF_IDX_RET_VAL (1)
// Whether the viper function needs access to fun_obj
#define NEED_FUN_OBJ(emit) ((emit)->scope->exc_stack_size > 0 \
|| ((emit)->scope->scope_flags & (MP_SCOPE_FLAG_REFGLOBALS | MP_SCOPE_FLAG_HASCONSTS)))
// Whether the native/viper function needs to be wrapped in an exception handler
#define NEED_GLOBAL_EXC_HANDLER(emit) ((emit)->scope->exc_stack_size > 0 \
|| ((emit)->scope->scope_flags & (MP_SCOPE_FLAG_GENERATOR | MP_SCOPE_FLAG_REFGLOBALS)))
// Whether a slot is needed to store LOCAL_IDX_EXC_HANDLER_UNWIND
#define NEED_EXC_HANDLER_UNWIND(emit) ((emit)->scope->exc_stack_size > 0)
// Whether registers can be used to store locals (only true if there are no
// exception handlers, because otherwise an nlr_jump will restore registers to
// their state at the start of the function and updates to locals will be lost)
#define CAN_USE_REGS_FOR_LOCALS(emit) ((emit)->scope->exc_stack_size == 0 && !(emit->scope->scope_flags & MP_SCOPE_FLAG_GENERATOR))
// Indices within the local C stack for various variables
#define LOCAL_IDX_EXC_VAL(emit) (NLR_BUF_IDX_RET_VAL)
#define LOCAL_IDX_EXC_HANDLER_PC(emit) (NLR_BUF_IDX_LOCAL_1)
#define LOCAL_IDX_EXC_HANDLER_UNWIND(emit) (SIZEOF_NLR_BUF + 1) // this needs a dedicated variable outside nlr_buf_t
#define LOCAL_IDX_RET_VAL(emit) (SIZEOF_NLR_BUF) // needed when NEED_GLOBAL_EXC_HANDLER is true
#define LOCAL_IDX_FUN_OBJ(emit) ((emit)->code_state_start + OFFSETOF_CODE_STATE_FUN_BC)
#define LOCAL_IDX_OLD_GLOBALS(emit) ((emit)->code_state_start + OFFSETOF_CODE_STATE_IP)
#define LOCAL_IDX_GEN_PC(emit) ((emit)->code_state_start + OFFSETOF_CODE_STATE_IP)
#define LOCAL_IDX_LOCAL_VAR(emit, local_num) ((emit)->stack_start + (emit)->n_state - 1 - (local_num))
#if MICROPY_PERSISTENT_CODE_SAVE
// When building with the ability to save native code to .mpy files:
// - Qstrs are indirect via qstr_table, and REG_LOCAL_3 always points to qstr_table.
// - In a generator no registers are used to store locals, and REG_LOCAL_2 points to the generator state.
// - At most 2 registers hold local variables (see CAN_USE_REGS_FOR_LOCALS for when this is possible).
#define REG_GENERATOR_STATE (REG_LOCAL_2)
#define REG_QSTR_TABLE (REG_LOCAL_3)
#define MAX_REGS_FOR_LOCAL_VARS (2)
STATIC const uint8_t reg_local_table[MAX_REGS_FOR_LOCAL_VARS] = {REG_LOCAL_1, REG_LOCAL_2};
#else
// When building without the ability to save native code to .mpy files:
// - Qstrs values are written directly into the machine code.
// - In a generator no registers are used to store locals, and REG_LOCAL_3 points to the generator state.
// - At most 3 registers hold local variables (see CAN_USE_REGS_FOR_LOCALS for when this is possible).
#define REG_GENERATOR_STATE (REG_LOCAL_3)
#define MAX_REGS_FOR_LOCAL_VARS (3)
STATIC const uint8_t reg_local_table[MAX_REGS_FOR_LOCAL_VARS] = {REG_LOCAL_1, REG_LOCAL_2, REG_LOCAL_3};
#endif
#define REG_LOCAL_LAST (reg_local_table[MAX_REGS_FOR_LOCAL_VARS - 1])
#define EMIT_NATIVE_VIPER_TYPE_ERROR(emit, ...) do { \
*emit->error_slot = mp_obj_new_exception_msg_varg(&mp_type_ViperTypeError, __VA_ARGS__); \
} while (0)
typedef enum {
STACK_VALUE,
STACK_REG,
STACK_IMM,
} stack_info_kind_t;
// these enums must be distinct and the bottom 4 bits
// must correspond to the correct MP_NATIVE_TYPE_xxx value
typedef enum {
VTYPE_PYOBJ = 0x00 | MP_NATIVE_TYPE_OBJ,
VTYPE_BOOL = 0x00 | MP_NATIVE_TYPE_BOOL,
VTYPE_INT = 0x00 | MP_NATIVE_TYPE_INT,
VTYPE_UINT = 0x00 | MP_NATIVE_TYPE_UINT,
VTYPE_PTR = 0x00 | MP_NATIVE_TYPE_PTR,
VTYPE_PTR8 = 0x00 | MP_NATIVE_TYPE_PTR8,
VTYPE_PTR16 = 0x00 | MP_NATIVE_TYPE_PTR16,
VTYPE_PTR32 = 0x00 | MP_NATIVE_TYPE_PTR32,
VTYPE_PTR_NONE = 0x50 | MP_NATIVE_TYPE_PTR,
VTYPE_UNBOUND = 0x60 | MP_NATIVE_TYPE_OBJ,
VTYPE_BUILTIN_CAST = 0x70 | MP_NATIVE_TYPE_OBJ,
} vtype_kind_t;
STATIC qstr vtype_to_qstr(vtype_kind_t vtype) {
switch (vtype) {
case VTYPE_PYOBJ:
return MP_QSTR_object;
case VTYPE_BOOL:
return MP_QSTR_bool;
case VTYPE_INT:
return MP_QSTR_int;
case VTYPE_UINT:
return MP_QSTR_uint;
case VTYPE_PTR:
return MP_QSTR_ptr;
case VTYPE_PTR8:
return MP_QSTR_ptr8;
case VTYPE_PTR16:
return MP_QSTR_ptr16;
case VTYPE_PTR32:
return MP_QSTR_ptr32;
case VTYPE_PTR_NONE:
default:
return MP_QSTR_None;
}
}
typedef struct _stack_info_t {
vtype_kind_t vtype;
stack_info_kind_t kind;
union {
int u_reg;
mp_int_t u_imm;
} data;
} stack_info_t;
#define UNWIND_LABEL_UNUSED (0x7fff)
#define UNWIND_LABEL_DO_FINAL_UNWIND (0x7ffe)
typedef struct _exc_stack_entry_t {
uint16_t label : 15;
uint16_t is_finally : 1;
uint16_t unwind_label : 15;
uint16_t is_active : 1;
} exc_stack_entry_t;
struct _emit_t {
mp_emit_common_t *emit_common;
mp_obj_t *error_slot;
uint *label_slot;
uint exit_label;
int pass;
bool do_viper_types;
bool prelude_offset_uses_u16_encoding;
mp_uint_t local_vtype_alloc;
vtype_kind_t *local_vtype;
mp_uint_t stack_info_alloc;
stack_info_t *stack_info;
vtype_kind_t saved_stack_vtype;
size_t exc_stack_alloc;
size_t exc_stack_size;
exc_stack_entry_t *exc_stack;
int prelude_offset;
int prelude_ptr_index;
int start_offset;
int n_state;
uint16_t code_state_start;
uint16_t stack_start;
int stack_size;
uint16_t n_info;
uint16_t n_cell;
scope_t *scope;
ASM_T *as;
};
STATIC void emit_load_reg_with_object(emit_t *emit, int reg, mp_obj_t obj);
STATIC void emit_native_global_exc_entry(emit_t *emit);
STATIC void emit_native_global_exc_exit(emit_t *emit);
STATIC void emit_native_load_const_obj(emit_t *emit, mp_obj_t obj);
emit_t *EXPORT_FUN(new)(mp_emit_common_t * emit_common, mp_obj_t *error_slot, uint *label_slot, mp_uint_t max_num_labels) {
emit_t *emit = m_new0(emit_t, 1);
emit->emit_common = emit_common;
emit->error_slot = error_slot;
emit->label_slot = label_slot;
emit->stack_info_alloc = 8;
emit->stack_info = m_new(stack_info_t, emit->stack_info_alloc);
emit->exc_stack_alloc = 8;
emit->exc_stack = m_new(exc_stack_entry_t, emit->exc_stack_alloc);
emit->as = m_new0(ASM_T, 1);
mp_asm_base_init(&emit->as->base, max_num_labels);
return emit;
}
void EXPORT_FUN(free)(emit_t * emit) {
mp_asm_base_deinit(&emit->as->base, false);
m_del_obj(ASM_T, emit->as);
m_del(exc_stack_entry_t, emit->exc_stack, emit->exc_stack_alloc);
m_del(vtype_kind_t, emit->local_vtype, emit->local_vtype_alloc);
m_del(stack_info_t, emit->stack_info, emit->stack_info_alloc);
m_del_obj(emit_t, emit);
}
STATIC void emit_call_with_imm_arg(emit_t *emit, mp_fun_kind_t fun_kind, mp_int_t arg_val, int arg_reg);
STATIC void emit_native_mov_reg_const(emit_t *emit, int reg_dest, int const_val) {
ASM_LOAD_REG_REG_OFFSET(emit->as, reg_dest, REG_FUN_TABLE, const_val);
}
STATIC void emit_native_mov_state_reg(emit_t *emit, int local_num, int reg_src) {
if (emit->scope->scope_flags & MP_SCOPE_FLAG_GENERATOR) {
ASM_STORE_REG_REG_OFFSET(emit->as, reg_src, REG_GENERATOR_STATE, local_num);
} else {
ASM_MOV_LOCAL_REG(emit->as, local_num, reg_src);
}
}
STATIC void emit_native_mov_reg_state(emit_t *emit, int reg_dest, int local_num) {
if (emit->scope->scope_flags & MP_SCOPE_FLAG_GENERATOR) {
ASM_LOAD_REG_REG_OFFSET(emit->as, reg_dest, REG_GENERATOR_STATE, local_num);
} else {
ASM_MOV_REG_LOCAL(emit->as, reg_dest, local_num);
}
}
STATIC void emit_native_mov_reg_state_addr(emit_t *emit, int reg_dest, int local_num) {
if (emit->scope->scope_flags & MP_SCOPE_FLAG_GENERATOR) {
ASM_MOV_REG_IMM(emit->as, reg_dest, local_num * ASM_WORD_SIZE);
ASM_ADD_REG_REG(emit->as, reg_dest, REG_GENERATOR_STATE);
} else {
ASM_MOV_REG_LOCAL_ADDR(emit->as, reg_dest, local_num);
}
}
STATIC void emit_native_mov_reg_qstr(emit_t *emit, int arg_reg, qstr qst) {
#if MICROPY_PERSISTENT_CODE_SAVE
ASM_LOAD16_REG_REG_OFFSET(emit->as, arg_reg, REG_QSTR_TABLE, mp_emit_common_use_qstr(emit->emit_common, qst));
#else
ASM_MOV_REG_IMM(emit->as, arg_reg, qst);
#endif
}
STATIC void emit_native_mov_reg_qstr_obj(emit_t *emit, int reg_dest, qstr qst) {
#if MICROPY_PERSISTENT_CODE_SAVE
emit_load_reg_with_object(emit, reg_dest, MP_OBJ_NEW_QSTR(qst));
#else
ASM_MOV_REG_IMM(emit->as, reg_dest, (mp_uint_t)MP_OBJ_NEW_QSTR(qst));
#endif
}
#define emit_native_mov_state_imm_via(emit, local_num, imm, reg_temp) \
do { \
ASM_MOV_REG_IMM((emit)->as, (reg_temp), (imm)); \
emit_native_mov_state_reg((emit), (local_num), (reg_temp)); \
} while (false)
STATIC void emit_native_start_pass(emit_t *emit, pass_kind_t pass, scope_t *scope) {
DEBUG_printf("start_pass(pass=%u, scope=%p)\n", pass, scope);
emit->pass = pass;
emit->do_viper_types = scope->emit_options == MP_EMIT_OPT_VIPER;
emit->stack_size = 0;
emit->scope = scope;
// allocate memory for keeping track of the types of locals
if (emit->local_vtype_alloc < scope->num_locals) {
emit->local_vtype = m_renew(vtype_kind_t, emit->local_vtype, emit->local_vtype_alloc, scope->num_locals);
emit->local_vtype_alloc = scope->num_locals;
}
// set default type for arguments
mp_uint_t num_args = emit->scope->num_pos_args + emit->scope->num_kwonly_args;
if (scope->scope_flags & MP_SCOPE_FLAG_VARARGS) {
num_args += 1;
}
if (scope->scope_flags & MP_SCOPE_FLAG_VARKEYWORDS) {
num_args += 1;
}
for (mp_uint_t i = 0; i < num_args; i++) {
emit->local_vtype[i] = VTYPE_PYOBJ;
}
// Set viper type for arguments
if (emit->do_viper_types) {
for (int i = 0; i < emit->scope->id_info_len; ++i) {
id_info_t *id = &emit->scope->id_info[i];
if (id->flags & ID_FLAG_IS_PARAM) {
assert(id->local_num < emit->local_vtype_alloc);
emit->local_vtype[id->local_num] = id->flags >> ID_FLAG_VIPER_TYPE_POS;
}
}
}
// local variables begin unbound, and have unknown type
for (mp_uint_t i = num_args; i < emit->local_vtype_alloc; i++) {
emit->local_vtype[i] = emit->do_viper_types ? VTYPE_UNBOUND : VTYPE_PYOBJ;
}
// values on stack begin unbound
for (mp_uint_t i = 0; i < emit->stack_info_alloc; i++) {
emit->stack_info[i].kind = STACK_VALUE;
emit->stack_info[i].vtype = VTYPE_UNBOUND;
}
mp_asm_base_start_pass(&emit->as->base, pass == MP_PASS_EMIT ? MP_ASM_PASS_EMIT : MP_ASM_PASS_COMPUTE);
// generate code for entry to function
// Work out start of code state (mp_code_state_native_t or reduced version for viper)
emit->code_state_start = 0;
if (NEED_GLOBAL_EXC_HANDLER(emit)) {
emit->code_state_start = SIZEOF_NLR_BUF; // for nlr_buf_t
emit->code_state_start += 1; // for return_value
if (NEED_EXC_HANDLER_UNWIND(emit)) {
emit->code_state_start += 1;
}
}
size_t fun_table_off = mp_emit_common_use_const_obj(emit->emit_common, MP_OBJ_FROM_PTR(&mp_fun_table));
if (emit->do_viper_types) {
// Work out size of state (locals plus stack)
// n_state counts all stack and locals, even those in registers
emit->n_state = scope->num_locals + scope->stack_size;
int num_locals_in_regs = 0;
if (CAN_USE_REGS_FOR_LOCALS(emit)) {
num_locals_in_regs = scope->num_locals;
if (num_locals_in_regs > MAX_REGS_FOR_LOCAL_VARS) {
num_locals_in_regs = MAX_REGS_FOR_LOCAL_VARS;
}
// Need a spot for REG_LOCAL_LAST (see below)
if (scope->num_pos_args >= MAX_REGS_FOR_LOCAL_VARS + 1) {
--num_locals_in_regs;
}
}
// Work out where the locals and Python stack start within the C stack
if (NEED_GLOBAL_EXC_HANDLER(emit)) {
// Reserve 2 words for function object and old globals
emit->stack_start = emit->code_state_start + 2;
} else if (scope->scope_flags & MP_SCOPE_FLAG_HASCONSTS) {
// Reserve 1 word for function object, to access const table
emit->stack_start = emit->code_state_start + 1;
} else {
emit->stack_start = emit->code_state_start + 0;
}
// Entry to function
ASM_ENTRY(emit->as, emit->stack_start + emit->n_state - num_locals_in_regs);
#if N_X86
asm_x86_mov_arg_to_r32(emit->as, 0, REG_PARENT_ARG_1);
#endif
// Load REG_FUN_TABLE with a pointer to mp_fun_table, found in the const_table
ASM_LOAD_REG_REG_OFFSET(emit->as, REG_FUN_TABLE, REG_PARENT_ARG_1, OFFSETOF_OBJ_FUN_BC_CONTEXT);
#if MICROPY_PERSISTENT_CODE_SAVE
ASM_LOAD_REG_REG_OFFSET(emit->as, REG_QSTR_TABLE, REG_FUN_TABLE, OFFSETOF_MODULE_CONTEXT_QSTR_TABLE);
#endif
ASM_LOAD_REG_REG_OFFSET(emit->as, REG_FUN_TABLE, REG_FUN_TABLE, OFFSETOF_MODULE_CONTEXT_OBJ_TABLE);
ASM_LOAD_REG_REG_OFFSET(emit->as, REG_FUN_TABLE, REG_FUN_TABLE, fun_table_off);
// Store function object (passed as first arg) to stack if needed
if (NEED_FUN_OBJ(emit)) {
ASM_MOV_LOCAL_REG(emit->as, LOCAL_IDX_FUN_OBJ(emit), REG_PARENT_ARG_1);
}
// Put n_args in REG_ARG_1, n_kw in REG_ARG_2, args array in REG_LOCAL_LAST
#if N_X86
asm_x86_mov_arg_to_r32(emit->as, 1, REG_ARG_1);
asm_x86_mov_arg_to_r32(emit->as, 2, REG_ARG_2);
asm_x86_mov_arg_to_r32(emit->as, 3, REG_LOCAL_LAST);
#else
ASM_MOV_REG_REG(emit->as, REG_ARG_1, REG_PARENT_ARG_2);
ASM_MOV_REG_REG(emit->as, REG_ARG_2, REG_PARENT_ARG_3);
ASM_MOV_REG_REG(emit->as, REG_LOCAL_LAST, REG_PARENT_ARG_4);
#endif
// Check number of args matches this function, and call mp_arg_check_num_sig if not
ASM_JUMP_IF_REG_NONZERO(emit->as, REG_ARG_2, *emit->label_slot + 4, true);
ASM_MOV_REG_IMM(emit->as, REG_ARG_3, scope->num_pos_args);
ASM_JUMP_IF_REG_EQ(emit->as, REG_ARG_1, REG_ARG_3, *emit->label_slot + 5);
mp_asm_base_label_assign(&emit->as->base, *emit->label_slot + 4);
ASM_MOV_REG_IMM(emit->as, REG_ARG_3, MP_OBJ_FUN_MAKE_SIG(scope->num_pos_args, scope->num_pos_args, false));
ASM_CALL_IND(emit->as, MP_F_ARG_CHECK_NUM_SIG);
mp_asm_base_label_assign(&emit->as->base, *emit->label_slot + 5);
// Store arguments into locals (reg or stack), converting to native if needed
for (int i = 0; i < emit->scope->num_pos_args; i++) {
int r = REG_ARG_1;
ASM_LOAD_REG_REG_OFFSET(emit->as, REG_ARG_1, REG_LOCAL_LAST, i);
if (emit->local_vtype[i] != VTYPE_PYOBJ) {
emit_call_with_imm_arg(emit, MP_F_CONVERT_OBJ_TO_NATIVE, emit->local_vtype[i], REG_ARG_2);
r = REG_RET;
}
// REG_LOCAL_LAST points to the args array so be sure not to overwrite it if it's still needed
if (i < MAX_REGS_FOR_LOCAL_VARS && CAN_USE_REGS_FOR_LOCALS(emit) && (i != MAX_REGS_FOR_LOCAL_VARS - 1 || emit->scope->num_pos_args == MAX_REGS_FOR_LOCAL_VARS)) {
ASM_MOV_REG_REG(emit->as, reg_local_table[i], r);
} else {
emit_native_mov_state_reg(emit, LOCAL_IDX_LOCAL_VAR(emit, i), r);
}
}
// Get local from the stack back into REG_LOCAL_LAST if this reg couldn't be written to above
if (emit->scope->num_pos_args >= MAX_REGS_FOR_LOCAL_VARS + 1 && CAN_USE_REGS_FOR_LOCALS(emit)) {
ASM_MOV_REG_LOCAL(emit->as, REG_LOCAL_LAST, LOCAL_IDX_LOCAL_VAR(emit, MAX_REGS_FOR_LOCAL_VARS - 1));
}
emit_native_global_exc_entry(emit);
} else {
// work out size of state (locals plus stack)
emit->n_state = scope->num_locals + scope->stack_size;
if (emit->scope->scope_flags & MP_SCOPE_FLAG_GENERATOR) {
mp_asm_base_data(&emit->as->base, ASM_WORD_SIZE, (uintptr_t)emit->prelude_ptr_index);
mp_asm_base_data(&emit->as->base, ASM_WORD_SIZE, (uintptr_t)emit->start_offset);
ASM_ENTRY(emit->as, emit->code_state_start);
// Reset the state size for the state pointed to by REG_GENERATOR_STATE
emit->code_state_start = 0;
emit->stack_start = SIZEOF_CODE_STATE;
// Put address of code_state into REG_GENERATOR_STATE
#if N_X86
asm_x86_mov_arg_to_r32(emit->as, 0, REG_GENERATOR_STATE);
#else
ASM_MOV_REG_REG(emit->as, REG_GENERATOR_STATE, REG_PARENT_ARG_1);
#endif
// Put throw value into LOCAL_IDX_EXC_VAL slot, for yield/yield-from
#if N_X86
asm_x86_mov_arg_to_r32(emit->as, 1, REG_PARENT_ARG_2);
#endif
ASM_MOV_LOCAL_REG(emit->as, LOCAL_IDX_EXC_VAL(emit), REG_PARENT_ARG_2);
// Load REG_FUN_TABLE with a pointer to mp_fun_table, found in the const_table
ASM_LOAD_REG_REG_OFFSET(emit->as, REG_TEMP0, REG_GENERATOR_STATE, LOCAL_IDX_FUN_OBJ(emit));
ASM_LOAD_REG_REG_OFFSET(emit->as, REG_TEMP0, REG_TEMP0, OFFSETOF_OBJ_FUN_BC_CONTEXT);
#if MICROPY_PERSISTENT_CODE_SAVE
ASM_LOAD_REG_REG_OFFSET(emit->as, REG_QSTR_TABLE, REG_TEMP0, OFFSETOF_MODULE_CONTEXT_QSTR_TABLE);
#endif
ASM_LOAD_REG_REG_OFFSET(emit->as, REG_TEMP0, REG_TEMP0, OFFSETOF_MODULE_CONTEXT_OBJ_TABLE);
ASM_LOAD_REG_REG_OFFSET(emit->as, REG_FUN_TABLE, REG_TEMP0, fun_table_off);
} else {
// The locals and stack start after the code_state structure
emit->stack_start = emit->code_state_start + SIZEOF_CODE_STATE;
// Allocate space on C-stack for code_state structure, which includes state
ASM_ENTRY(emit->as, emit->stack_start + emit->n_state);
// Prepare incoming arguments for call to mp_setup_code_state
#if N_X86
asm_x86_mov_arg_to_r32(emit->as, 0, REG_PARENT_ARG_1);
asm_x86_mov_arg_to_r32(emit->as, 1, REG_PARENT_ARG_2);
asm_x86_mov_arg_to_r32(emit->as, 2, REG_PARENT_ARG_3);
asm_x86_mov_arg_to_r32(emit->as, 3, REG_PARENT_ARG_4);
#endif
// Load REG_FUN_TABLE with a pointer to mp_fun_table, found in the const_table
ASM_LOAD_REG_REG_OFFSET(emit->as, REG_FUN_TABLE, REG_PARENT_ARG_1, OFFSETOF_OBJ_FUN_BC_CONTEXT);
#if MICROPY_PERSISTENT_CODE_SAVE
ASM_LOAD_REG_REG_OFFSET(emit->as, REG_QSTR_TABLE, REG_FUN_TABLE, OFFSETOF_MODULE_CONTEXT_QSTR_TABLE);
#endif
ASM_LOAD_REG_REG_OFFSET(emit->as, REG_FUN_TABLE, REG_FUN_TABLE, OFFSETOF_MODULE_CONTEXT_OBJ_TABLE);
ASM_LOAD_REG_REG_OFFSET(emit->as, REG_FUN_TABLE, REG_FUN_TABLE, fun_table_off);
// Set code_state.fun_bc
ASM_MOV_LOCAL_REG(emit->as, LOCAL_IDX_FUN_OBJ(emit), REG_PARENT_ARG_1);
// Set code_state.ip, a pointer to the beginning of the prelude. This pointer is found
// either directly in mp_obj_fun_bc_t.child_table (if there are no children), or in
// mp_obj_fun_bc_t.child_table[num_children] (if num_children > 0).
ASM_LOAD_REG_REG_OFFSET(emit->as, REG_PARENT_ARG_1, REG_PARENT_ARG_1, OFFSETOF_OBJ_FUN_BC_CHILD_TABLE);
if (emit->prelude_ptr_index != 0) {
ASM_LOAD_REG_REG_OFFSET(emit->as, REG_PARENT_ARG_1, REG_PARENT_ARG_1, emit->prelude_ptr_index);
}
emit_native_mov_state_reg(emit, emit->code_state_start + OFFSETOF_CODE_STATE_IP, REG_PARENT_ARG_1);
// Set code_state.n_state (only works on little endian targets due to n_state being uint16_t)
emit_native_mov_state_imm_via(emit, emit->code_state_start + OFFSETOF_CODE_STATE_N_STATE, emit->n_state, REG_ARG_1);
// Put address of code_state into first arg
ASM_MOV_REG_LOCAL_ADDR(emit->as, REG_ARG_1, emit->code_state_start);
// Copy next 3 args if needed
#if REG_ARG_2 != REG_PARENT_ARG_2
ASM_MOV_REG_REG(emit->as, REG_ARG_2, REG_PARENT_ARG_2);
#endif
#if REG_ARG_3 != REG_PARENT_ARG_3
ASM_MOV_REG_REG(emit->as, REG_ARG_3, REG_PARENT_ARG_3);
#endif
#if REG_ARG_4 != REG_PARENT_ARG_4
ASM_MOV_REG_REG(emit->as, REG_ARG_4, REG_PARENT_ARG_4);
#endif
// Call mp_setup_code_state to prepare code_state structure
#if N_THUMB
asm_thumb_bl_ind(emit->as, MP_F_SETUP_CODE_STATE, ASM_THUMB_REG_R4);
#elif N_ARM
asm_arm_bl_ind(emit->as, MP_F_SETUP_CODE_STATE, ASM_ARM_REG_R4);
#else
ASM_CALL_IND(emit->as, MP_F_SETUP_CODE_STATE);
#endif
}
emit_native_global_exc_entry(emit);
// cache some locals in registers, but only if no exception handlers
if (CAN_USE_REGS_FOR_LOCALS(emit)) {
for (int i = 0; i < MAX_REGS_FOR_LOCAL_VARS && i < scope->num_locals; ++i) {
ASM_MOV_REG_LOCAL(emit->as, reg_local_table[i], LOCAL_IDX_LOCAL_VAR(emit, i));
}
}
// set the type of closed over variables
for (mp_uint_t i = 0; i < scope->id_info_len; i++) {
id_info_t *id = &scope->id_info[i];
if (id->kind == ID_INFO_KIND_CELL) {
emit->local_vtype[id->local_num] = VTYPE_PYOBJ;
}
}
}
}
static inline void emit_native_write_code_info_byte(emit_t *emit, byte val) {
mp_asm_base_data(&emit->as->base, 1, val);
}
static inline void emit_native_write_code_info_qstr(emit_t *emit, qstr qst) {
mp_encode_uint(&emit->as->base, mp_asm_base_get_cur_to_write_bytes, mp_emit_common_use_qstr(emit->emit_common, qst));
}
STATIC bool emit_native_end_pass(emit_t *emit) {
emit_native_global_exc_exit(emit);
if (!emit->do_viper_types) {
emit->prelude_offset = mp_asm_base_get_code_pos(&emit->as->base);
emit->prelude_ptr_index = emit->emit_common->ct_cur_child;
size_t n_state = emit->n_state;
size_t n_exc_stack = 0; // exc-stack not needed for native code
MP_BC_PRELUDE_SIG_ENCODE(n_state, n_exc_stack, emit->scope, emit_native_write_code_info_byte, emit);
size_t n_info = emit->n_info;
size_t n_cell = emit->n_cell;
MP_BC_PRELUDE_SIZE_ENCODE(n_info, n_cell, emit_native_write_code_info_byte, emit);
// bytecode prelude: source info (function and argument qstrs)
size_t info_start = mp_asm_base_get_code_pos(&emit->as->base);
emit_native_write_code_info_qstr(emit, emit->scope->simple_name);
for (int i = 0; i < emit->scope->num_pos_args + emit->scope->num_kwonly_args; i++) {
qstr qst = MP_QSTR__star_;
for (int j = 0; j < emit->scope->id_info_len; ++j) {
id_info_t *id = &emit->scope->id_info[j];
if ((id->flags & ID_FLAG_IS_PARAM) && id->local_num == i) {
qst = id->qst;
break;
}
}
emit_native_write_code_info_qstr(emit, qst);
}
emit->n_info = mp_asm_base_get_code_pos(&emit->as->base) - info_start;
// bytecode prelude: initialise closed over variables
size_t cell_start = mp_asm_base_get_code_pos(&emit->as->base);
for (int i = 0; i < emit->scope->id_info_len; i++) {
id_info_t *id = &emit->scope->id_info[i];
if (id->kind == ID_INFO_KIND_CELL) {
assert(id->local_num <= 255);
mp_asm_base_data(&emit->as->base, 1, id->local_num); // write the local which should be converted to a cell
}
}
emit->n_cell = mp_asm_base_get_code_pos(&emit->as->base) - cell_start;
}
ASM_END_PASS(emit->as);
// check stack is back to zero size
assert(emit->stack_size == 0);
assert(emit->exc_stack_size == 0);
if (emit->pass == MP_PASS_EMIT) {
void *f = mp_asm_base_get_code(&emit->as->base);
mp_uint_t f_len = mp_asm_base_get_code_size(&emit->as->base);
mp_raw_code_t **children = emit->emit_common->children;
if (!emit->do_viper_types) {
#if MICROPY_EMIT_NATIVE_PRELUDE_SEPARATE_FROM_MACHINE_CODE
// Executable code cannot be accessed byte-wise on this architecture, so copy
// the prelude to a separate memory region that is byte-wise readable.
void *buf = emit->as->base.code_base + emit->prelude_offset;
size_t n = emit->as->base.code_offset - emit->prelude_offset;
const uint8_t *prelude_ptr = memcpy(m_new(uint8_t, n), buf, n);
#else
// Point to the prelude directly, at the end of the machine code data.
const uint8_t *prelude_ptr = (const uint8_t *)f + emit->prelude_offset;
#endif
// Store the pointer to the prelude using the child_table.
assert(emit->prelude_ptr_index == emit->emit_common->ct_cur_child);
if (emit->prelude_ptr_index == 0) {
children = (void *)prelude_ptr;
} else {
children = m_renew(mp_raw_code_t *, children, emit->prelude_ptr_index, emit->prelude_ptr_index + 1);
children[emit->prelude_ptr_index] = (void *)prelude_ptr;
}
}
mp_emit_glue_assign_native(emit->scope->raw_code,
emit->do_viper_types ? MP_CODE_NATIVE_VIPER : MP_CODE_NATIVE_PY,
f, f_len,
children,
#if MICROPY_PERSISTENT_CODE_SAVE
emit->emit_common->ct_cur_child,
emit->prelude_offset,
#endif
emit->scope->scope_flags, 0, 0);
}
return true;
}
STATIC void ensure_extra_stack(emit_t *emit, size_t delta) {
if (emit->stack_size + delta > emit->stack_info_alloc) {
size_t new_alloc = (emit->stack_size + delta + 8) & ~3;
emit->stack_info = m_renew(stack_info_t, emit->stack_info, emit->stack_info_alloc, new_alloc);
emit->stack_info_alloc = new_alloc;
}
}
STATIC void adjust_stack(emit_t *emit, mp_int_t stack_size_delta) {
assert((mp_int_t)emit->stack_size + stack_size_delta >= 0);
assert((mp_int_t)emit->stack_size + stack_size_delta <= (mp_int_t)emit->stack_info_alloc);
emit->stack_size += stack_size_delta;
if (emit->pass > MP_PASS_SCOPE && emit->stack_size > emit->scope->stack_size) {
emit->scope->stack_size = emit->stack_size;
}
#ifdef DEBUG_PRINT
DEBUG_printf(" adjust_stack; stack_size=%d+%d; stack now:", emit->stack_size - stack_size_delta, stack_size_delta);
for (int i = 0; i < emit->stack_size; i++) {
stack_info_t *si = &emit->stack_info[i];
DEBUG_printf(" (v=%d k=%d %d)", si->vtype, si->kind, si->data.u_reg);
}
DEBUG_printf("\n");
#endif
}
STATIC void emit_native_adjust_stack_size(emit_t *emit, mp_int_t delta) {
DEBUG_printf("adjust_stack_size(" INT_FMT ")\n", delta);
if (delta > 0) {
ensure_extra_stack(emit, delta);
}
// If we are adjusting the stack in a positive direction (pushing) then we
// need to fill in values for the stack kind and vtype of the newly-pushed
// entries. These should be set to "value" (ie not reg or imm) because we
// should only need to adjust the stack due to a jump to this part in the
// code (and hence we have settled the stack before the jump).
for (mp_int_t i = 0; i < delta; i++) {
stack_info_t *si = &emit->stack_info[emit->stack_size + i];
si->kind = STACK_VALUE;
// TODO we don't know the vtype to use here. At the moment this is a
// hack to get the case of multi comparison working.
if (delta == 1) {
si->vtype = emit->saved_stack_vtype;
} else {
si->vtype = VTYPE_PYOBJ;
}
}
adjust_stack(emit, delta);
}
STATIC void emit_native_set_source_line(emit_t *emit, mp_uint_t source_line) {
(void)emit;
(void)source_line;
}
// this must be called at start of emit functions
STATIC void emit_native_pre(emit_t *emit) {
(void)emit;
}
// depth==0 is top, depth==1 is before top, etc
STATIC stack_info_t *peek_stack(emit_t *emit, mp_uint_t depth) {
return &emit->stack_info[emit->stack_size - 1 - depth];
}
// depth==0 is top, depth==1 is before top, etc
STATIC vtype_kind_t peek_vtype(emit_t *emit, mp_uint_t depth) {
if (emit->do_viper_types) {
return peek_stack(emit, depth)->vtype;
} else {
// Type is always PYOBJ even if the intermediate stored value is not
return VTYPE_PYOBJ;
}
}
// pos=1 is TOS, pos=2 is next, etc
// use pos=0 for no skipping
STATIC void need_reg_single(emit_t *emit, int reg_needed, int skip_stack_pos) {
skip_stack_pos = emit->stack_size - skip_stack_pos;
for (int i = 0; i < emit->stack_size; i++) {
if (i != skip_stack_pos) {
stack_info_t *si = &emit->stack_info[i];
if (si->kind == STACK_REG && si->data.u_reg == reg_needed) {
si->kind = STACK_VALUE;
emit_native_mov_state_reg(emit, emit->stack_start + i, si->data.u_reg);
}
}
}
}
// Ensures all unsettled registers that hold Python values are copied to the
// concrete Python stack. All registers are then free to use.
STATIC void need_reg_all(emit_t *emit) {
for (int i = 0; i < emit->stack_size; i++) {
stack_info_t *si = &emit->stack_info[i];
if (si->kind == STACK_REG) {
DEBUG_printf(" reg(%u) to local(%u)\n", si->data.u_reg, emit->stack_start + i);
si->kind = STACK_VALUE;
emit_native_mov_state_reg(emit, emit->stack_start + i, si->data.u_reg);
}
}
}
STATIC vtype_kind_t load_reg_stack_imm(emit_t *emit, int reg_dest, const stack_info_t *si, bool convert_to_pyobj) {
if (!convert_to_pyobj && emit->do_viper_types) {
ASM_MOV_REG_IMM(emit->as, reg_dest, si->data.u_imm);
return si->vtype;
} else {
if (si->vtype == VTYPE_PYOBJ) {
ASM_MOV_REG_IMM(emit->as, reg_dest, si->data.u_imm);
} else if (si->vtype == VTYPE_BOOL) {
emit_native_mov_reg_const(emit, reg_dest, MP_F_CONST_FALSE_OBJ + si->data.u_imm);
} else if (si->vtype == VTYPE_INT || si->vtype == VTYPE_UINT) {
ASM_MOV_REG_IMM(emit->as, reg_dest, (uintptr_t)MP_OBJ_NEW_SMALL_INT(si->data.u_imm));
} else if (si->vtype == VTYPE_PTR_NONE) {
emit_native_mov_reg_const(emit, reg_dest, MP_F_CONST_NONE_OBJ);
} else {
mp_raise_NotImplementedError(MP_ERROR_TEXT("conversion to object"));
}
return VTYPE_PYOBJ;
}
}
// Copies all unsettled registers and immediates that are Python values into the
// concrete Python stack. This ensures the concrete Python stack holds valid
// values for the current stack_size.
// This function may clobber REG_TEMP1.
STATIC void need_stack_settled(emit_t *emit) {
DEBUG_printf(" need_stack_settled; stack_size=%d\n", emit->stack_size);
need_reg_all(emit);
for (int i = 0; i < emit->stack_size; i++) {
stack_info_t *si = &emit->stack_info[i];
if (si->kind == STACK_IMM) {
DEBUG_printf(" imm(" INT_FMT ") to local(%u)\n", si->data.u_imm, emit->stack_start + i);
si->kind = STACK_VALUE;
// using REG_TEMP1 to avoid clobbering REG_TEMP0 (aka REG_RET)
si->vtype = load_reg_stack_imm(emit, REG_TEMP1, si, false);
emit_native_mov_state_reg(emit, emit->stack_start + i, REG_TEMP1);
}
}
}
// pos=1 is TOS, pos=2 is next, etc
STATIC void emit_access_stack(emit_t *emit, int pos, vtype_kind_t *vtype, int reg_dest) {
need_reg_single(emit, reg_dest, pos);
stack_info_t *si = &emit->stack_info[emit->stack_size - pos];
*vtype = si->vtype;
switch (si->kind) {
case STACK_VALUE:
emit_native_mov_reg_state(emit, reg_dest, emit->stack_start + emit->stack_size - pos);
break;
case STACK_REG:
if (si->data.u_reg != reg_dest) {
ASM_MOV_REG_REG(emit->as, reg_dest, si->data.u_reg);
}
break;
case STACK_IMM:
*vtype = load_reg_stack_imm(emit, reg_dest, si, false);
break;
}
}
// does an efficient X=pop(); discard(); push(X)
// needs a (non-temp) register in case the poped element was stored in the stack
STATIC void emit_fold_stack_top(emit_t *emit, int reg_dest) {
stack_info_t *si = &emit->stack_info[emit->stack_size - 2];
si[0] = si[1];
if (si->kind == STACK_VALUE) {
// if folded element was on the stack we need to put it in a register
emit_native_mov_reg_state(emit, reg_dest, emit->stack_start + emit->stack_size - 1);
si->kind = STACK_REG;
si->data.u_reg = reg_dest;
}
adjust_stack(emit, -1);
}
// If stacked value is in a register and the register is not r1 or r2, then
// *reg_dest is set to that register. Otherwise the value is put in *reg_dest.
STATIC void emit_pre_pop_reg_flexible(emit_t *emit, vtype_kind_t *vtype, int *reg_dest, int not_r1, int not_r2) {
stack_info_t *si = peek_stack(emit, 0);
if (si->kind == STACK_REG && si->data.u_reg != not_r1 && si->data.u_reg != not_r2) {
*vtype = si->vtype;
*reg_dest = si->data.u_reg;
need_reg_single(emit, *reg_dest, 1);
} else {
emit_access_stack(emit, 1, vtype, *reg_dest);
}
adjust_stack(emit, -1);
}
STATIC void emit_pre_pop_discard(emit_t *emit) {
adjust_stack(emit, -1);
}
STATIC void emit_pre_pop_reg(emit_t *emit, vtype_kind_t *vtype, int reg_dest) {
emit_access_stack(emit, 1, vtype, reg_dest);
adjust_stack(emit, -1);
}
STATIC void emit_pre_pop_reg_reg(emit_t *emit, vtype_kind_t *vtypea, int rega, vtype_kind_t *vtypeb, int regb) {
emit_pre_pop_reg(emit, vtypea, rega);
emit_pre_pop_reg(emit, vtypeb, regb);
}
STATIC void emit_pre_pop_reg_reg_reg(emit_t *emit, vtype_kind_t *vtypea, int rega, vtype_kind_t *vtypeb, int regb, vtype_kind_t *vtypec, int regc) {
emit_pre_pop_reg(emit, vtypea, rega);
emit_pre_pop_reg(emit, vtypeb, regb);
emit_pre_pop_reg(emit, vtypec, regc);
}
STATIC void emit_post(emit_t *emit) {
(void)emit;
}
STATIC void emit_post_top_set_vtype(emit_t *emit, vtype_kind_t new_vtype) {
stack_info_t *si = &emit->stack_info[emit->stack_size - 1];
si->vtype = new_vtype;
}
STATIC void emit_post_push_reg(emit_t *emit, vtype_kind_t vtype, int reg) {
ensure_extra_stack(emit, 1);
stack_info_t *si = &emit->stack_info[emit->stack_size];
si->vtype = vtype;
si->kind = STACK_REG;
si->data.u_reg = reg;
adjust_stack(emit, 1);
}
STATIC void emit_post_push_imm(emit_t *emit, vtype_kind_t vtype, mp_int_t imm) {
ensure_extra_stack(emit, 1);
stack_info_t *si = &emit->stack_info[emit->stack_size];
si->vtype = vtype;
si->kind = STACK_IMM;
si->data.u_imm = imm;
adjust_stack(emit, 1);
}
STATIC void emit_post_push_reg_reg(emit_t *emit, vtype_kind_t vtypea, int rega, vtype_kind_t vtypeb, int regb) {
emit_post_push_reg(emit, vtypea, rega);
emit_post_push_reg(emit, vtypeb, regb);
}
STATIC void emit_post_push_reg_reg_reg(emit_t *emit, vtype_kind_t vtypea, int rega, vtype_kind_t vtypeb, int regb, vtype_kind_t vtypec, int regc) {
emit_post_push_reg(emit, vtypea, rega);
emit_post_push_reg(emit, vtypeb, regb);
emit_post_push_reg(emit, vtypec, regc);
}
STATIC void emit_post_push_reg_reg_reg_reg(emit_t *emit, vtype_kind_t vtypea, int rega, vtype_kind_t vtypeb, int regb, vtype_kind_t vtypec, int regc, vtype_kind_t vtyped, int regd) {
emit_post_push_reg(emit, vtypea, rega);
emit_post_push_reg(emit, vtypeb, regb);
emit_post_push_reg(emit, vtypec, regc);
emit_post_push_reg(emit, vtyped, regd);
}
STATIC void emit_call(emit_t *emit, mp_fun_kind_t fun_kind) {
need_reg_all(emit);
ASM_CALL_IND(emit->as, fun_kind);
}
STATIC void emit_call_with_imm_arg(emit_t *emit, mp_fun_kind_t fun_kind, mp_int_t arg_val, int arg_reg) {
need_reg_all(emit);
ASM_MOV_REG_IMM(emit->as, arg_reg, arg_val);
ASM_CALL_IND(emit->as, fun_kind);
}
STATIC void emit_call_with_2_imm_args(emit_t *emit, mp_fun_kind_t fun_kind, mp_int_t arg_val1, int arg_reg1, mp_int_t arg_val2, int arg_reg2) {