-
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodcmath.c
154 lines (137 loc) · 7.29 KB
/
modcmath.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2013, 2014 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "py/builtin.h"
#if MICROPY_PY_BUILTINS_FLOAT && MICROPY_PY_BUILTINS_COMPLEX && MICROPY_PY_CMATH
#include <math.h>
// phase(z): returns the phase of the number z in the range (-pi, +pi]
STATIC mp_obj_t mp_cmath_phase(mp_obj_t z_obj) {
mp_float_t real, imag;
mp_obj_get_complex(z_obj, &real, &imag);
return mp_obj_new_float(MICROPY_FLOAT_C_FUN(atan2)(imag, real));
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_cmath_phase_obj, mp_cmath_phase);
// polar(z): returns the polar form of z as a tuple
STATIC mp_obj_t mp_cmath_polar(mp_obj_t z_obj) {
mp_float_t real, imag;
mp_obj_get_complex(z_obj, &real, &imag);
mp_obj_t tuple[2] = {
mp_obj_new_float(MICROPY_FLOAT_C_FUN(sqrt)(real * real + imag * imag)),
mp_obj_new_float(MICROPY_FLOAT_C_FUN(atan2)(imag, real)),
};
return mp_obj_new_tuple(2, tuple);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_cmath_polar_obj, mp_cmath_polar);
// rect(r, phi): returns the complex number with modulus r and phase phi
STATIC mp_obj_t mp_cmath_rect(mp_obj_t r_obj, mp_obj_t phi_obj) {
mp_float_t r = mp_obj_get_float(r_obj);
mp_float_t phi = mp_obj_get_float(phi_obj);
return mp_obj_new_complex(r * MICROPY_FLOAT_C_FUN(cos)(phi), r * MICROPY_FLOAT_C_FUN(sin)(phi));
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(mp_cmath_rect_obj, mp_cmath_rect);
// exp(z): return the exponential of z
STATIC mp_obj_t mp_cmath_exp(mp_obj_t z_obj) {
mp_float_t real, imag;
mp_obj_get_complex(z_obj, &real, &imag);
mp_float_t exp_real = MICROPY_FLOAT_C_FUN(exp)(real);
return mp_obj_new_complex(exp_real * MICROPY_FLOAT_C_FUN(cos)(imag), exp_real * MICROPY_FLOAT_C_FUN(sin)(imag));
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_cmath_exp_obj, mp_cmath_exp);
// log(z): return the natural logarithm of z, with branch cut along the negative real axis
// TODO can take second argument, being the base
STATIC mp_obj_t mp_cmath_log(mp_obj_t z_obj) {
mp_float_t real, imag;
mp_obj_get_complex(z_obj, &real, &imag);
return mp_obj_new_complex(MICROPY_FLOAT_CONST(0.5) * MICROPY_FLOAT_C_FUN(log)(real * real + imag * imag), MICROPY_FLOAT_C_FUN(atan2)(imag, real));
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_cmath_log_obj, mp_cmath_log);
#if MICROPY_PY_MATH_SPECIAL_FUNCTIONS
// log10(z): return the base-10 logarithm of z, with branch cut along the negative real axis
STATIC mp_obj_t mp_cmath_log10(mp_obj_t z_obj) {
mp_float_t real, imag;
mp_obj_get_complex(z_obj, &real, &imag);
return mp_obj_new_complex(MICROPY_FLOAT_CONST(0.5) * MICROPY_FLOAT_C_FUN(log10)(real * real + imag * imag), MICROPY_FLOAT_CONST(0.4342944819032518) * MICROPY_FLOAT_C_FUN(atan2)(imag, real));
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_cmath_log10_obj, mp_cmath_log10);
#endif
// sqrt(z): return the square-root of z
STATIC mp_obj_t mp_cmath_sqrt(mp_obj_t z_obj) {
mp_float_t real, imag;
mp_obj_get_complex(z_obj, &real, &imag);
mp_float_t sqrt_abs = MICROPY_FLOAT_C_FUN(pow)(real * real + imag * imag, MICROPY_FLOAT_CONST(0.25));
mp_float_t theta = MICROPY_FLOAT_CONST(0.5) * MICROPY_FLOAT_C_FUN(atan2)(imag, real);
return mp_obj_new_complex(sqrt_abs * MICROPY_FLOAT_C_FUN(cos)(theta), sqrt_abs * MICROPY_FLOAT_C_FUN(sin)(theta));
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_cmath_sqrt_obj, mp_cmath_sqrt);
// cos(z): return the cosine of z
STATIC mp_obj_t mp_cmath_cos(mp_obj_t z_obj) {
mp_float_t real, imag;
mp_obj_get_complex(z_obj, &real, &imag);
return mp_obj_new_complex(MICROPY_FLOAT_C_FUN(cos)(real) * MICROPY_FLOAT_C_FUN(cosh)(imag), -MICROPY_FLOAT_C_FUN(sin)(real) * MICROPY_FLOAT_C_FUN(sinh)(imag));
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_cmath_cos_obj, mp_cmath_cos);
// sin(z): return the sine of z
STATIC mp_obj_t mp_cmath_sin(mp_obj_t z_obj) {
mp_float_t real, imag;
mp_obj_get_complex(z_obj, &real, &imag);
return mp_obj_new_complex(MICROPY_FLOAT_C_FUN(sin)(real) * MICROPY_FLOAT_C_FUN(cosh)(imag), MICROPY_FLOAT_C_FUN(cos)(real) * MICROPY_FLOAT_C_FUN(sinh)(imag));
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_cmath_sin_obj, mp_cmath_sin);
STATIC const mp_rom_map_elem_t mp_module_cmath_globals_table[] = {
{ MP_ROM_QSTR(MP_QSTR___name__), MP_ROM_QSTR(MP_QSTR_cmath) },
{ MP_ROM_QSTR(MP_QSTR_e), mp_const_float_e },
{ MP_ROM_QSTR(MP_QSTR_pi), mp_const_float_pi },
{ MP_ROM_QSTR(MP_QSTR_phase), MP_ROM_PTR(&mp_cmath_phase_obj) },
{ MP_ROM_QSTR(MP_QSTR_polar), MP_ROM_PTR(&mp_cmath_polar_obj) },
{ MP_ROM_QSTR(MP_QSTR_rect), MP_ROM_PTR(&mp_cmath_rect_obj) },
{ MP_ROM_QSTR(MP_QSTR_exp), MP_ROM_PTR(&mp_cmath_exp_obj) },
{ MP_ROM_QSTR(MP_QSTR_log), MP_ROM_PTR(&mp_cmath_log_obj) },
#if MICROPY_PY_MATH_SPECIAL_FUNCTIONS
{ MP_ROM_QSTR(MP_QSTR_log10), MP_ROM_PTR(&mp_cmath_log10_obj) },
#endif
{ MP_ROM_QSTR(MP_QSTR_sqrt), MP_ROM_PTR(&mp_cmath_sqrt_obj) },
// { MP_ROM_QSTR(MP_QSTR_acos), MP_ROM_PTR(&mp_cmath_acos_obj) },
// { MP_ROM_QSTR(MP_QSTR_asin), MP_ROM_PTR(&mp_cmath_asin_obj) },
// { MP_ROM_QSTR(MP_QSTR_atan), MP_ROM_PTR(&mp_cmath_atan_obj) },
{ MP_ROM_QSTR(MP_QSTR_cos), MP_ROM_PTR(&mp_cmath_cos_obj) },
{ MP_ROM_QSTR(MP_QSTR_sin), MP_ROM_PTR(&mp_cmath_sin_obj) },
// { MP_ROM_QSTR(MP_QSTR_tan), MP_ROM_PTR(&mp_cmath_tan_obj) },
// { MP_ROM_QSTR(MP_QSTR_acosh), MP_ROM_PTR(&mp_cmath_acosh_obj) },
// { MP_ROM_QSTR(MP_QSTR_asinh), MP_ROM_PTR(&mp_cmath_asinh_obj) },
// { MP_ROM_QSTR(MP_QSTR_atanh), MP_ROM_PTR(&mp_cmath_atanh_obj) },
// { MP_ROM_QSTR(MP_QSTR_cosh), MP_ROM_PTR(&mp_cmath_cosh_obj) },
// { MP_ROM_QSTR(MP_QSTR_sinh), MP_ROM_PTR(&mp_cmath_sinh_obj) },
// { MP_ROM_QSTR(MP_QSTR_tanh), MP_ROM_PTR(&mp_cmath_tanh_obj) },
// { MP_ROM_QSTR(MP_QSTR_isfinite), MP_ROM_PTR(&mp_cmath_isfinite_obj) },
// { MP_ROM_QSTR(MP_QSTR_isinf), MP_ROM_PTR(&mp_cmath_isinf_obj) },
// { MP_ROM_QSTR(MP_QSTR_isnan), MP_ROM_PTR(&mp_cmath_isnan_obj) },
};
STATIC MP_DEFINE_CONST_DICT(mp_module_cmath_globals, mp_module_cmath_globals_table);
const mp_obj_module_t mp_module_cmath = {
.base = { &mp_type_module },
.globals = (mp_obj_dict_t *)&mp_module_cmath_globals,
};
MP_REGISTER_MODULE(MP_QSTR_cmath, mp_module_cmath);
#endif // MICROPY_PY_BUILTINS_FLOAT && MICROPY_PY_BUILTINS_COMPLEX && MICROPY_PY_CMATH