-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodels.py
63 lines (60 loc) · 2.53 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import numpy as np
import torch.nn as nn
import ast
import torchsummary
import torch
class NN(nn.Module):
"""
Simple feedforward neural network.
"""
def __init__(self, input_shape, hidden, activation='relu', sigmoid_output=True, conv_number=1):
"""
Initialize the neural network.
:param input_shape: The shape of the input.
:param hidden: A list of hidden layer sizes.
:param activation: The activation function to use.
:param sigmoid_output: Whether to use a sigmoid activation on the output.
:param conv_number: The number of convolutional layers to use.
"""
super().__init__()
self.seq = nn.Sequential()
if conv_number > 0:
self.seq.append(nn.Conv2d(in_channels=input_shape[0], out_channels=32, kernel_size=3, stride=1,
padding=1,
bias=True))
self.seq.append(nn.BatchNorm2d(32))
self.seq.append(nn.ReLU())
for i in range(conv_number - 1):
self.seq.append(nn.Conv2d(in_channels=32 * (2 ** i), out_channels=32 * (2 ** (i + 1)), kernel_size=3,
stride=1,
padding=1,
bias=True))
self.seq.append(nn.BatchNorm2d(32 * (2 ** (i + 1))))
self.seq.append(nn.ReLU())
self.seq.append(nn.MaxPool2d(kernel_size=2))
input_size = 32 * (2 ** (conv_number - 1)) * ((input_shape[1] // (2 ** (conv_number - 1))) *
(input_shape[2] // (2 ** (conv_number - 1))))
else:
input_size = np.prod(input_shape)
self.seq.append(nn.Flatten())
self.seq.append(nn.Linear(input_size, hidden[0]))
self.seq.append(nn.BatchNorm1d(hidden[0]))
for i in range(len(hidden) - 1):
if activation == 'relu':
self.seq.append(nn.ReLU())
else:
self.seq.append(nn.Tanh())
self.seq.append(nn.Linear(hidden[i], hidden[i + 1]))
self.seq.append(nn.BatchNorm1d(hidden[i + 1]))
if sigmoid_output:
self.seq.append(nn.Sigmoid())
def forward(self, x):
"""
Forward pass.
:param x: The input.
:return: The output.
"""
return self.seq(x)
def _init_weights(self, module):
module.weight.data.uniform_(-100, 100)
module.bias.data.zero_()