-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathconvert_flowers_to_hd5_script.py
71 lines (56 loc) · 1.99 KB
/
convert_flowers_to_hd5_script.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import os
from os.path import join, isfile
import numpy as np
import h5py
from glob import glob
from torch.utils.serialization import load_lua
from PIL import Image
import yaml
import io
import pdb
with open('config.yaml', 'r') as f:
config = yaml.load(f)
images_path = config['flowers_images_path']
embedding_path = config['flowers_embedding_path']
text_path = config['flowers_text_path']
datasetDir = config['flowers_dataset_path']
val_classes = open(config['flowers_val_split_path']).read().splitlines()
train_classes = open(config['flowers_train_split_path']).read().splitlines()
test_classes = open(config['flowers_test_split_path']).read().splitlines()
f = h5py.File(datasetDir, 'w')
train = f.create_group('train')
valid = f.create_group('valid')
test = f.create_group('test')
for _class in sorted(os.listdir(embedding_path)):
split = ''
if _class in train_classes:
split = train
elif _class in val_classes:
split = valid
elif _class in test_classes:
split = test
data_path = os.path.join(embedding_path, _class)
txt_path = os.path.join(text_path, _class)
for example, txt_file in zip(sorted(glob(data_path + "/*.t7")), sorted(glob(txt_path + "/*.txt"))):
example_data = load_lua(example)
img_path = example_data['img']
embeddings = example_data['txt'].numpy()
example_name = img_path.split('/')[-1][:-4]
f = open(txt_file, "r")
txt = f.readlines()
f.close()
img_path = os.path.join(images_path, img_path)
img = open(img_path, 'rb').read()
txt_choice = np.random.choice(range(10), 5)
embeddings = embeddings[txt_choice]
txt = np.array(txt)
txt = txt[txt_choice]
dt = h5py.special_dtype(vlen=str)
for c, e in enumerate(embeddings):
ex = split.create_group(example_name + '_' + str(c))
ex.create_dataset('name', data=example_name)
ex.create_dataset('img', data=np.void(img))
ex.create_dataset('embeddings', data=e)
ex.create_dataset('class', data=_class)
ex.create_dataset('txt', data=txt[c].astype(object), dtype=dt)
print(example_name, txt[1], _class)