-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathtrainer.py
640 lines (510 loc) · 28.2 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
import numpy as np
import torch
import yaml
from torch import nn
from torch.autograd import Variable
from torch.utils.data import DataLoader
from txt2image_dataset import Text2ImageDataset, collate_fn
from models.gan_factory import gan_factory
from utils import Utils
from PIL import Image
import os
from tqdm import tqdm
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import pdb
import pickle
from build_vocab import Vocabulary
from caption_gan_model import CaptionDiscriminator, CaptionGenerator
from torch.nn.utils.rnn import *
is_cuda = torch.cuda.is_available()
def to_var(x, volatile=False):
if torch.cuda.is_available():
x = x.cuda()
return Variable(x, volatile=volatile)
class Trainer(object):
def __init__(self, type, dataset, split, lr, diter, vis_screen, save_path, l1_coef, l2_coef, pre_trained_gen, pre_trained_disc, batch_size, num_workers, epochs, pre_trained_disc_B, pre_trained_gen_B):
with open('config.yaml', 'r') as f:
config = yaml.load(f)
# forward gan
if is_cuda:
self.generator = torch.nn.DataParallel(gan_factory.generator_factory('gan').cuda())
self.discriminator = torch.nn.DataParallel(gan_factory.discriminator_factory('gan').cuda())
self.generator2 = torch.nn.DataParallel(gan_factory.generator_factory('stage2_gan').cuda())
self.discriminator2 = torch.nn.DataParallel(gan_factory.discriminator_factory('stage2_gan').cuda())
else:
self.generator = torch.nn.DataParallel(gan_factory.generator_factory('gan'))
self.discriminator = torch.nn.DataParallel(gan_factory.discriminator_factory('gan'))
self.generator2 = torch.nn.DataParallel(gan_factory.generator_factory('stage2_gan'))
self.discriminator2 = torch.nn.DataParallel(gan_factory.discriminator_factory('stage2_gan'))
if pre_trained_disc:
self.discriminator.load_state_dict(torch.load(pre_trained_disc))
else:
self.discriminator.apply(Utils.weights_init)
if pre_trained_gen:
self.generator.load_state_dict(torch.load(pre_trained_gen))
else:
self.generator.apply(Utils.weights_init)
if pre_trained_disc_B:
self.discriminator2.load_state_dict(torch.load(pre_trained_disc_B))
else:
self.discriminator2.apply(Utils.weights_init)
if pre_trained_gen_B:
self.generator2.load_state_dict(torch.load(pre_trained_gen_B))
else:
self.generator2.apply(Utils.weights_init)
if dataset == 'birds':
with open('./data/birds_vocab.pkl', 'rb') as f:
self.vocab = pickle.load(f)
self.dataset = Text2ImageDataset(config['birds_dataset_path'], dataset_type='birds', vocab=self.vocab, split=split)
elif dataset == 'flowers':
with open('./data/flowers_vocab.pkl', 'rb') as f:
self.vocab = pickle.load(f)
self.dataset = Text2ImageDataset(config['flowers_dataset_path'], dataset_type='flowers', vocab=self.vocab, split=split)
else:
print('Dataset not supported, please select either birds or flowers.')
exit()
self.noise_dim = 100
self.batch_size = batch_size
self.lr = lr
self.beta1 = 0.5
self.num_epochs = epochs
self.DITER = diter
self.num_workers = num_workers
self.l1_coef = l1_coef
self.l2_coef = l2_coef
self.data_loader = DataLoader(self.dataset, batch_size=self.batch_size, shuffle=True,
num_workers=self.num_workers, collate_fn=collate_fn)
self.optimD = torch.optim.Adam(self.discriminator.parameters(), lr=self.lr, betas=(self.beta1, 0.999))
self.optimG = torch.optim.Adam(self.generator.parameters(), lr=self.lr, betas=(self.beta1, 0.999))
self.optimD2 = torch.optim.Adam(self.discriminator2.parameters(), lr=self.lr, betas=(self.beta1, 0.999))
self.optimG2 = torch.optim.Adam(self.generator2.parameters(), lr=self.lr, betas=(self.beta1, 0.999))
self.checkpoints_path = './checkpoints/'
self.save_path = save_path
self.type = type
# TODO: put these as runtime.py params
self.embed_size = 256
self.hidden_size = 512
self.num_layers = 1
self.gen_pretrain_num_epochs = 100
self.disc_pretrain_num_epochs = 20
self.figure_path = './figures/'
self.caption_generator = CaptionGenerator(self.embed_size, self.hidden_size, len(self.vocab), self.num_layers).cuda()
self.caption_discriminator = CaptionDiscriminator(self.embed_size, self.hidden_size, len(self.vocab), self.num_layers).cuda()
pretrained_caption_gen = './checkpoints/pretrained-generator-20.pkl'
pretrained_caption_disc = './checkpoints/pretrained-discriminator-5.pkl'
if os.path.exists(pretrained_caption_gen):
print('loaded pretrained caption generator')
self.caption_generator.load_state_dict(torch.load(pretrained_caption_gen))
if os.path.exists(pretrained_caption_disc):
print('loaded pretrained caption discriminator')
self.caption_discriminator.load_state_dict(torch.load(pretrained_caption_disc))
self.optim_captionG = torch.optim.Adam(list(self.caption_generator.parameters()))
self.optim_captionD = torch.optim.Adam(list(self.caption_discriminator.parameters()))
def train(self, cls=False, interp=False):
if self.type == 'gan':
self._train_gan(cls, interp)
elif self.type == 'stackgan':
self._train_stack_gan(cls, interp)
elif self.type == 'pretrain_caption':
self._pretrain_caption()
def _pretrain_caption(self):
# Create model directory
if not os.path.exists(self.checkpoints_path):
os.makedirs(self.checkpoints_path)
if not os.path.exists(self.figure_path):
os.makedirs(self.figure_path)
# Build the models (Gen)
generator = CaptionGenerator(self.embed_size, self.hidden_size, len(self.vocab), self.num_layers)
# Build the models (Disc)
discriminator = CaptionDiscriminator(self.embed_size, self.hidden_size, len(self.vocab), self.num_layers)
if torch.cuda.is_available():
generator.cuda()
discriminator.cuda()
# Loss and Optimizer (Gen)
mle_criterion = nn.CrossEntropyLoss()
params_gen = list(generator.parameters())
optimizer_gen = torch.optim.Adam(params_gen)
# Loss and Optimizer (Disc)
params_disc = list(discriminator.parameters())
optimizer_disc = torch.optim.Adam(params_disc)
disc_losses = []
gen_losses = []
for epoch in tqdm(range(max([int(self.gen_pretrain_num_epochs), int(self.disc_pretrain_num_epochs)]))):
for sample in self.data_loader:
images = sample['right_images128'] # 64x3x128x128
captions = sample['captions']
lengths = sample['lengths']
wrong_captions = sample['wrong_captions']
wrong_lengths = sample['wrong_lengths']
images = to_var(images, volatile=True)
captions = to_var(captions)
wrong_captions = to_var(wrong_captions)
targets = pack_padded_sequence(captions, lengths, batch_first=True)[0]
if epoch < int(self.gen_pretrain_num_epochs):
generator.zero_grad()
outputs, _ = generator(images, captions, lengths)
loss_gen = mle_criterion(outputs, targets)
gen_losses.append(loss_gen.cpu().data.numpy()[0])
loss_gen.backward()
optimizer_gen.step()
if epoch < int(self.disc_pretrain_num_epochs):
discriminator.zero_grad()
rewards_real = discriminator(images, captions, lengths)
# rewards_fake = discriminator(images, sampled_captions, sampled_lengths)
rewards_wrong = discriminator(images, wrong_captions, wrong_lengths)
real_loss = -torch.mean(torch.log(rewards_real))
# fake_loss = -torch.mean(torch.clamp(torch.log(1 - rewards_fake), min=-1000))
wrong_loss = -torch.mean(torch.clamp(torch.log(1 - rewards_wrong), min=-1000))
loss_disc = real_loss + wrong_loss # + fake_loss, no fake_loss because this is pretraining
disc_losses.append(loss_disc.cpu().data.numpy()[0])
loss_disc.backward()
optimizer_disc.step()
# Save pretrained models
torch.save(discriminator.state_dict(), os.path.join(self.checkpoints_path, 'pretrained-discriminator-%d.pkl' %int(self.disc_pretrain_num_epochs)))
torch.save(generator.state_dict(), os.path.join(self.checkpoints_path, 'pretrained-generator-%d.pkl' %int(self.gen_pretrain_num_epochs)))
# Plot pretraining figures
plt.plot(disc_losses, label='pretraining_caption_disc_loss')
plt.savefig(self.figure_path + 'pretraining_caption_disc_losses.png')
plt.clf()
plt.plot(gen_losses, label='pretraining_gen_loss')
plt.savefig(self.figure_path + 'pretraining_gen_losses.png')
plt.clf()
def _train_gan(self, cls, interp):
criterion = nn.BCELoss()
l2_loss = nn.MSELoss()
l1_loss = nn.L1Loss()
iteration = 0
gen_losses = []
disc_losses = []
for epoch in tqdm(range(self.num_epochs)):
for sample in tqdm(self.data_loader):
# pdb.set_trace()
iteration += 1
# sample.keys() = dict_keys(['right_images', 'wrong_images', 'inter_embed', 'right_embed', 'txt'])
right_images = sample['right_images'] # 64x3x64x64
right_embed = sample['right_embed'] # 64x1024
wrong_images = sample['wrong_images'] # 64x3x64x64
if is_cuda:
right_images = Variable(right_images.float()).cuda()
right_embed = Variable(right_embed.float()).cuda()
wrong_images = Variable(wrong_images.float()).cuda()
else:
right_images = Variable(right_images.float())
right_embed = Variable(right_embed.float())
wrong_images = Variable(wrong_images.float())
real_labels = torch.ones(right_images.size(0))
fake_labels = torch.zeros(right_images.size(0))
# ======== One sided label smoothing ==========
# Helps preventing the discriminator from overpowering the
# generator adding penalty when the discriminator is too confident
# =============================================
smoothed_real_labels = torch.FloatTensor(Utils.smooth_label(real_labels.numpy(), -0.1))
if is_cuda:
real_labels = Variable(real_labels).cuda()
smoothed_real_labels = Variable(smoothed_real_labels).cuda()
fake_labels = Variable(fake_labels).cuda()
else:
real_labels = Variable(real_labels)
smoothed_real_labels = Variable(smoothed_real_labels)
fake_labels = Variable(fake_labels)
# Train the discriminator
self.discriminator.zero_grad()
outputs, activation_real = self.discriminator(right_images, right_embed)
real_loss = criterion(outputs, smoothed_real_labels)
real_score = outputs
if cls:
outputs, _ = self.discriminator(wrong_images, right_embed)
wrong_loss = criterion(outputs, fake_labels)
wrong_score = outputs
if is_cuda:
noise = Variable(torch.randn(right_images.size(0), 100)).cuda()
else:
noise = Variable(torch.randn(right_images.size(0), 100))
noise = noise.view(noise.size(0), 100, 1, 1)
fake_images = self.generator(right_embed, noise)
outputs, _ = self.discriminator(fake_images, right_embed)
fake_loss = criterion(outputs, fake_labels)
fake_score = outputs
if cls:
d_loss = real_loss + 0.5 * wrong_loss + 0.5 * fake_loss
else:
d_loss = real_loss + fake_loss
d_loss.backward()
self.optimD.step()
# Train the generator
self.generator.zero_grad()
if is_cuda:
noise = Variable(torch.randn(right_images.size(0), 100)).cuda()
else:
noise = Variable(torch.randn(right_images.size(0), 100))
noise = noise.view(noise.size(0), 100, 1, 1)
fake_images = self.generator(right_embed, noise)
outputs, activation_fake = self.discriminator(fake_images, right_embed)
_, activation_real = self.discriminator(right_images, right_embed)
activation_fake = torch.mean(activation_fake, 0)
activation_real = torch.mean(activation_real, 0)
#======= Generator Loss function============
# This is a customized loss function, the first term is the regular cross entropy loss
# The second term is feature matching loss, this measure the distance between the real and generated
# images statistics by comparing intermediate layers activations
# The third term is L1 distance between the generated and real images, this is helpful for the conditional case
# because it links the embedding feature vector directly to certain pixel values.
#===========================================
g_loss = criterion(outputs, real_labels)
# \
# + self.l2_coef * l2_loss(activation_fake, activation_real.detach()) \
# + self.l1_coef * l1_loss(fake_images, right_images)
if (interp):
""" GAN INT loss"""
# pdb.set_trace()
# print('iter {}, size {}, right {}'.format(iteration, self.batch_size, right_embed.size()))i
available_batch_size = int(right_embed.size(0))
first_part = right_embed[:int(available_batch_size/2),:]
second_part = right_embed[int(available_batch_size/2):,:]
interp_embed = (first_part + second_part)*0.5
if is_cuda:
noise = Variable(torch.randn(int(available_batch_size/2), 100)).cuda()
else:
noise = Variable(torch.randn(int(available_batch_size), 100))
interp_real_labels = torch.ones(int(available_batch_size/2))
if is_cuda:
interp_real_labels = Variable(interp_real_labels).cuda()
else:
interp_real_labels = Variable(interp_real_labels)
fake_images = self.generator(interp_embed, noise)
outputs, activation_fake = self.discriminator(fake_images, interp_embed)
g_int_loss = criterion(outputs, interp_real_labels)
g_loss = g_loss + 0.2 * g_int_loss
g_loss.backward()
self.optimG.step()
gen_losses.append(g_loss.data[0])
disc_losses.append(d_loss.data[0])
with open('gen.pkl', 'wb') as f_gen, open('disc.pkl', 'wb') as f_disc:
pickle.dump(gen_losses, f_gen)
pickle.dump(disc_losses, f_disc)
x = list(range(len(gen_losses)))
plt.plot(x, gen_losses, 'g-', label='gen loss')
plt.plot(x, disc_losses, 'b-', label='disc loss')
plt.legend()
plt.savefig('gen_vs_disc_.png')
plt.clf()
# if (epoch) % 10 == 0:
if (epoch) % 50 == 0:
Utils.save_checkpoint(self.discriminator, self.generator, self.checkpoints_path, self.save_path, epoch)
def _train_stack_gan(self, cls, interp):
criterion = nn.BCELoss()
l2_loss = nn.MSELoss()
l1_loss = nn.L1Loss()
iteration = 0
# cycle gan params
lambda_a = 2
lambda_b = 2
mle_criterion = nn.CrossEntropyLoss()
gen_losses = []
disc_losses = []
cycle_a_losses = []
for epoch in tqdm(range(self.num_epochs)):
for sample in tqdm(self.data_loader):
# pdb.set_trace()
iteration += 1
# sample.keys() = dict_keys(['right_images', 'wrong_images', 'inter_embed', 'right_embed', 'txt'])
right_images = sample['right_images'] # 64x3x64x64
right_embed = sample['right_embed'] # 64x1024
wrong_images = sample['wrong_images'] # 64x3x64x64
right_images128 = sample['right_images128'] # 64x3x128x128
wrong_images128 = sample['wrong_images128'] # 64x3x128x128
right_captions = sample['captions']
right_lengths = sample['lengths']
if is_cuda:
right_images = Variable(right_images.float()).cuda()
right_embed = Variable(right_embed.float()).cuda()
wrong_images = Variable(wrong_images.float()).cuda()
right_images128 = Variable(right_images128.float()).cuda()
wrong_images128 = Variable(wrong_images128.float()).cuda()
right_captions = Variable(right_captions.long()).cuda()
else:
right_images = Variable(right_images.float())
right_embed = Variable(right_embed.float())
wrong_images = Variable(wrong_images.float())
right_images128 = Variable(right_images128.float())
wrong_images128 = Variable(wrong_images128.float())
right_captions = Variable(right_captions.long())
real_labels = torch.ones(right_images.size(0))
fake_labels = torch.zeros(right_images.size(0))
# ======== One sided label smoothing ==========
# Helps preventing the discriminator from overpowering the
# generator adding penalty when the discriminator is too confident
# =============================================
smoothed_real_labels = torch.FloatTensor(Utils.smooth_label(real_labels.numpy(), -0.1))
if is_cuda:
real_labels = Variable(real_labels).cuda()
smoothed_real_labels = Variable(smoothed_real_labels).cuda()
fake_labels = Variable(fake_labels).cuda()
else:
real_labels = Variable(real_labels)
smoothed_real_labels = Variable(smoothed_real_labels)
fake_labels = Variable(fake_labels)
# Train the discriminator
self.discriminator.zero_grad()
# ------------------- Training D stage 1 -------------------------------
outputs, activation_real = self.discriminator(right_images, right_embed)
real_loss = criterion(outputs, smoothed_real_labels)
real_score = outputs
if cls:
outputs, _ = self.discriminator(wrong_images, right_embed)
wrong_loss = criterion(outputs, fake_labels)
wrong_score = outputs
if is_cuda:
noise = Variable(torch.randn(right_images.size(0), 100)).cuda()
else:
noise = Variable(torch.randn(right_images.size(0), 100))
noise = noise.view(noise.size(0), 100, 1, 1)
fake_images = self.generator(right_embed, noise)
outputs, _ = self.discriminator(fake_images, right_embed)
fake_loss = criterion(outputs, fake_labels)
fake_score = outputs
if cls:
d_loss = real_loss + 0.5 * wrong_loss + 0.5 * fake_loss
else:
d_loss = real_loss + fake_loss
d_loss.backward()
self.optimD.step()
# -------------------- Training G stage 1 -------------------------------
self.generator.zero_grad()
self.discriminator.zero_grad()
if is_cuda:
noise = Variable(torch.randn(right_images.size(0), 100)).cuda()
else:
noise = Variable(torch.randn(right_images.size(0), 100))
noise = noise.view(noise.size(0), 100, 1, 1)
fake_images = self.generator(right_embed, noise)
outputs, activation_fake = self.discriminator(fake_images, right_embed)
g_loss = criterion(outputs, real_labels)
if (interp):
""" GAN INT loss"""
available_batch_size = int(right_embed.size(0))
first_part = right_embed[:int(available_batch_size/2),:]
second_part = right_embed[int(available_batch_size/2):,:]
interp_embed = (first_part + second_part)*0.5
if is_cuda:
noise = Variable(torch.randn(int(available_batch_size/2), 100)).cuda()
else:
noise = Variable(torch.randn(int(available_batch_size), 100))
noise = noise.view(noise.size(0), 100, 1, 1)
interp_real_labels = torch.ones(int(available_batch_size/2))
if is_cuda:
interp_real_labels = Variable(interp_real_labels).cuda()
else:
interp_real_labels = Variable(interp_real_labels)
fake_images = self.generator(interp_embed, noise)
outputs, activation_fake = self.discriminator(fake_images, interp_embed)
g_int_loss = criterion(outputs, interp_real_labels)
g_loss = g_loss + 0.2 * g_int_loss
g_loss.backward()
self.optimG.step()
# -------------------- Training D stage 2 -------------------------------
self.discriminator2.zero_grad()
outputs = self.discriminator2(right_images128, right_embed)
real_loss = criterion(outputs, smoothed_real_labels)
real_score = outputs
if cls:
outputs = self.discriminator2(wrong_images128, right_embed)
wrong_loss = criterion(outputs, fake_labels)
wrong_score = outputs
if is_cuda:
noise = Variable(torch.randn(right_images.size(0), 100)).cuda()
else:
noise = Variable(torch.randn(right_images.size(0), 100))
noise = noise.view(noise.size(0), 100, 1, 1)
fake_images_v1 = self.generator(right_embed, noise)
fake_images_v1 = fake_images_v1.detach()
fake_images = self.generator2(fake_images_v1, right_embed)
fake_images = fake_images.detach()
outputs = self.discriminator2(fake_images, right_embed)
fake_loss = criterion(outputs, fake_labels)
fake_score = outputs
if cls:
d_loss2 = real_loss + 0.5 * wrong_loss + 0.5 * fake_loss
else:
d_loss2 = real_loss + fake_loss
d_loss2.backward()
self.optimD2.step()
# -------------------- Training G stage 2 -------------------------------
self.generator2.zero_grad()
self.discriminator2.zero_grad()
if is_cuda:
noise = Variable(torch.randn(right_images.size(0), 100)).cuda()
else:
noise = Variable(torch.randn(right_images.size(0), 100))
noise = noise.view(noise.size(0), 100, 1, 1)
fake_images_v1 = self.generator(right_embed, noise)
fake_images_v1 = fake_images_v1.detach()
fake_images = self.generator2(fake_images_v1, right_embed)
outputs = self.discriminator2(fake_images, right_embed)
g_loss2 = criterion(outputs, real_labels)
g_loss2.backward()
self.optimG2.step()
gen_losses.append(g_loss2.data[0])
disc_losses.append(d_loss2.data[0])
# Generate caption with caption GAN (inverse GAN)
# fake_images.requires_grad = False # freeze the caption generator
self.caption_generator.zero_grad()
sampled_captions, _ = self.caption_generator.forward(fake_images, right_captions, right_lengths)
targets = pack_padded_sequence(right_captions, right_lengths, batch_first=True)[0]
loss_cycle_A = mle_criterion(sampled_captions, targets)* lambda_a
loss_cycle_A.backward()
self.optimG2.step()
self.optim_captionG.step()
cycle_a_losses.append(loss_cycle_A.data[0])
with open('gen.pkl', 'wb') as f_gen, open('disc.pkl', 'wb') as f_disc:
pickle.dump(gen_losses, f_gen)
pickle.dump(disc_losses, f_disc)
if (epoch+1) % 10 == 0:
# if (epoch+1) % 5 == 0:
Utils.save_checkpoint(self.discriminator, self.generator, self.checkpoints_path, self.save_path, epoch+1)
Utils.save_checkpoint(self.discriminator2, self.generator2, self.checkpoints_path, self.save_path, epoch+1, False, 2)
torch.save(self.caption_discriminator.state_dict(), os.path.join(self.checkpoints_path, 'cycle_caption_disc-%d.pkl' % (epoch + 1)))
torch.save(self.caption_generator.state_dict(), os.path.join(self.checkpoints_path, 'cycle_caption_gen-%d.pkl' % (epoch + 1) ))
# Plot pretraining figures
plt.plot(disc_losses, label='stage 1 disc losses')
plt.savefig(self.figure_path + 'stage_1_disc_losses.png')
plt.clf()
plt.plot(gen_losses, label='stage_1_gen_loss')
plt.savefig(self.figure_path + 'stage_1_gen_losses.png')
plt.clf()
plt.plot(disc_losses, label='cycle_a_losses')
plt.savefig(self.figure_path + 'cycle_a_losses.png')
plt.clf()
def predict(self, gan_type='gan'):
torch.manual_seed(7)
count = 0
for sample in self.data_loader:
right_images = sample['right_images']
right_embed = sample['right_embed']
txt = sample['txt']
if not os.path.exists('results/{0}'.format(self.save_path)):
os.makedirs('results/{0}'.format(self.save_path))
if is_cuda:
right_images = Variable(right_images.float()).cuda()
right_embed = Variable(right_embed.float()).cuda()
else:
right_images = Variable(right_images.float())
right_embed = Variable(right_embed.float())
# Train the generator
if is_cuda:
noise = Variable(torch.randn(right_images.size(0), 100)).cuda()
else:
noise = Variable(torch.randn(right_images.size(0), 100))
noise = noise.view(noise.size(0), 100, 1, 1)
fake_images = self.generator(right_embed, noise)
if(gan_type=='stackgan'):
fake_images = self.generator2(fake_images, right_embed)
for image, t in zip(fake_images, txt):
im = Image.fromarray(image.data.mul_(127.5).add_(127.5).byte().permute(1, 2, 0).cpu().numpy())
im.save('results/{0}/{1}.jpg'.format(self.save_path, t.replace("/", "")[:200]))
print(t)
count += 1
if count == 1:
break