-
Notifications
You must be signed in to change notification settings - Fork 6
/
option.py
217 lines (189 loc) · 10.3 KB
/
option.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import argparse
parser = argparse.ArgumentParser(description='EDSR and MDSR')
parser.add_argument('--debug', action='store_true',
help='Enables debug mode')
parser.add_argument('--template', default='.',
help='You can set various templates in option.py')
# Hardware specifications
parser.add_argument('--n_threads', type=int, default=6,
help='number of threads for data loading')
parser.add_argument('--cpu', action='store_true',
help='use cpu only')
parser.add_argument('--gpu_id', default="0",type=str,
help='the gpu id of using')
parser.add_argument('--n_GPUs', type=int, default=1,
help='number of GPUs')
parser.add_argument('--seed', type=int, default=1,
help='random seed')
parser.add_argument('--threshld_ratio', type=float, default=1.0,
help='random seed')
# Data specifications
parser.add_argument('--dir_data', type=str, default='/mnt/disk1/cheeun914/datasets/',
help='dataset image directory')
parser.add_argument('--dir_demo', type=str, default='../test',
help='demo image directory')
parser.add_argument('--data_train', type=str, default='DIV2K',
help='train dataset name')
parser.add_argument('--data_test', type=str, default='Set5',
help='test dataset name')
parser.add_argument('--data_range', type=str, default='1-800/801-810',
help='train/test data range')
parser.add_argument('--ext', type=str, default='sep',
help='dataset file extension')
parser.add_argument('--scale', type=str, default='4',
help='super resolution scale')
parser.add_argument('--patch_size', type=int, default=96,
help='output patch size')
parser.add_argument('--rgb_range', type=int, default=255,
help='maximum value of RGB')
parser.add_argument('--n_colors', type=int, default=3,
help='number of color channels to use')
parser.add_argument('--chop', action='store_true',
help='enable memory-efficient forward')
parser.add_argument('--no_augment', action='store_true',
help='do not use data augmentation')
parser.add_argument('--kl', action='store_true',
help='use kl')
parser.add_argument('--conv_idx', type=str, default='22',
help='vgg index')
# Model specifications
parser.add_argument('--model', default='EDSR',
help='model name')
parser.add_argument('--pix_type', default='l1',
help='model name')
parser.add_argument('--act', type=str, default='relu',
help='activation function')
parser.add_argument('--teacher_weights', type=str, default=None,
help='pretrained model directory for teacher initialization')
parser.add_argument('--student_weights', type=str, default=None,
help='pretrained model directory for student initialization')
parser.add_argument('--extend', type=str, default='.',
help='pre-trained model directory')
parser.add_argument('--n_resblocks', type=int, default=16,
help='number of residual blocks')
parser.add_argument('--n_feats', type=int, default=64,
help='number of feature maps')
parser.add_argument('--res_scale', type=float, default=1,
help='residual scaling')
parser.add_argument('--shift_mean', default=True,
help='subtract pixel mean from the input')
parser.add_argument('--dilation', action='store_true',
help='use dilated convolution')
parser.add_argument('--precision', type=str, default='single',
choices=('single', 'half'),
help='FP precision for test (single | half)')
parser.add_argument('--k_bits', type=int, default=32,
help='The k_bits of the quantize')
# Option for Residual dense network (RDN)
parser.add_argument('--G0', type=int, default=64,
help='default number of filters. (Use in RDN)')
parser.add_argument('--RDNkSize', type=int, default=3,
help='default kernel size. (Use in RDN)')
parser.add_argument('--RDNconfig', type=str, default='B',
help='parameters config of RDN. (Use in RDN)')
# Option for Residual channel attention network (RCAN)
parser.add_argument('--n_resgroups', type=int, default=10,
help='number of residual groups')
parser.add_argument('--reduction', type=int, default=16,
help='number of feature maps reduction')
#---------------------IDN-------------------------
parser.add_argument('--idn_d', type=int, default=16)
parser.add_argument('--idn_s', type=int, default=4)
# use n_feats of above : default = 64
#---------------------CARN-------------------------
parser.add_argument('--multi_scale',action='store_true')
parser.add_argument('--group', type=int, default=1)
# Training specifications
parser.add_argument('--reset', action='store_true',
help='reset the training')
parser.add_argument('--test_every', type=int, default=1000,
help='do test per every N batches')
parser.add_argument('--epochs', type=int, default=30,
help='number of epochs to train')
parser.add_argument('--ema_epoch', type=int, default=1,
help='number of epochs to train')
parser.add_argument('--batch_size', type=int, default=4,
help='input batch size for training')
parser.add_argument('--split_batch', type=int, default=1,
help='split the batch into smaller chunks')
parser.add_argument('--self_ensemble', action='store_true',
help='use self-ensemble method for test')
parser.add_argument('--test_only', action='store_true',
help='set this option to test the model')
parser.add_argument('--gan_k', type=int, default=1,
help='k value for adversarial loss')
# Optimization specifications
parser.add_argument('--lr', type=float, default=1e-4, help='learning rate')
parser.add_argument('--w_l1', type=float, default=1.0, help='learning rate for L1')
parser.add_argument('--w_at', type=float, default=1e+3, help='learning rate for distillation loss')
parser.add_argument('--w_bit', type=float, default=0.5, help='learning rate for bit regularization loss')
parser.add_argument('--decay', type=str, default='150',
help='learning rate decay type')
parser.add_argument('--gamma', type=float, default=0.5,
help='learning rate decay factor for step decay')
parser.add_argument('--optimizer', default='ADAM',
choices=('SGD', 'ADAM', 'RMSprop'),
help='optimizer to use (SGD | ADAM | RMSprop)')
parser.add_argument('--momentum', type=float, default=0.9,
help='SGD momentum')
parser.add_argument('--nesterov', type=bool, default=False,
help='nesterov')
parser.add_argument('--betas', type=tuple, default=(0.9, 0.999),
help='ADAM beta')
parser.add_argument('--epsilon', type=float, default=1e-8,
help='ADAM epsilon for numerical stability')
parser.add_argument('--weight_decay', type=float, default=0,
help='weight decay')
parser.add_argument('--gclip', type=float, default=5,
help='gradient clipping threshold (0 = no clipping)')
# Loss specifications
parser.add_argument('--loss', type=str, default='1*L1',
help='loss function configuration')
parser.add_argument('--skip_threshold', type=float, default='1e8',
help='skipping batch that has large error')
parser.add_argument('--loss_kd', action='store_true', help='trainning with knowledge distillation loss')
parser.add_argument('--loss_kdf', action='store_true', help='trainning with feature knowledge distillation loss')
# Log specifications
parser.add_argument('--suffix', default=None, type=str,
help='suffix to help you remember what experiment you ran')
parser.add_argument('--save', type=str, default='test',
help='file name to save')
parser.add_argument('--load', type=str, default='',
help='file name to load')
parser.add_argument('--resume', type=str, default=None,
help='resume from specific checkpoint')
parser.add_argument('--save_models', action='store_true',
help='save all intermediate models')
parser.add_argument('--print_every', type=int, default=100,
help='how many batches to wait before logging training status')
parser.add_argument('--save_results', action='store_true',
help='save output results')
parser.add_argument('--save_gt', action='store_true',
help='save low-resolution and high-resolution images together')
parser.add_argument('--cadyq', action='store_true', help='mixed precision for layer')
parser.add_argument('--search_space', type=str, default='32', help='bit search space')
parser.add_argument('--bitsel_lr', type=float, default=1e-4)
parser.add_argument('--bitsel_decay', type=str, default=150)
parser.add_argument('--w_bit_decay', type=float, default=2e-6)
parser.add_argument('--test_patch', action='store_true', help='testing patch-wise')
parser.add_argument('--step_size', type=int, default=28, help='step size for combining patches')
parser.add_argument('--save_patch', action='store_true',help='save patch results')
# parser.add_argument('--linq', action='store_true', help='linq')
# parser.add_argument('--fully', action='store_true', help='full quantization')
# parser.add_argument('--train_full', action='store_true', help='pretraining 32 bit model')
# parser.add_argument('--lpips', action='store_true', help='use lpips loss for optimization')
# FSRCNN
parser.add_argument('--m', type=int, default=4, help='m')
args = parser.parse_args()
args.scale = list(map(lambda x: int(x), args.scale.split('+')))
args.data_train = args.data_train.split('+')
args.data_test = args.data_test.split('+')
args.search_space = list(map(lambda x: int(x), args.search_space.split('+')))
# [2,4,8]
if args.epochs == 0:
args.epochs = 1e8
for arg in vars(args):
if vars(args)[arg] == 'True':
vars(args)[arg] = True
elif vars(args)[arg] == 'False':
vars(args)[arg] = False