-
Notifications
You must be signed in to change notification settings - Fork 56
/
SCOPE.m
480 lines (417 loc) · 21 KB
/
SCOPE.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
%% SCOPE.m (script)
% try
% clc
% %clear all
% disp('SCOPE forward simulation started')
% SCOPE is a coupled radiative transfer and energy balance model.
% Option 'lite' runs a computationally lighter variation ofhel the model,
% with the net radiation and leaf temperatures of leaf
% inclination classes are averaged. SCOPE_lite is developed by C. van
% der Tol of the University of Twente, under subcontract of Magellium,
% funded by the Europan Space Agency under contract FLEXL2-PFT-CCN2
%
% Copyright (C) 2021 Christiaan van der Tol
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
clear all %#ok<CLALL>
% for compiler comment paths
restoredefaultpath
addpath src/RTMs
addpath src/supporting
addpath src/fluxes
addpath src/IO
%% 1. define constants
constants = define_constants;
%% 2. paths
path_input = 'input/'; % path of all inputs
path_of_code = cd;
%% 3. simulation options
fid = fopen('set_parameter_filenames.csv','r');
parameter_file = textscan(fid,'%s','Delimiter', ',');
fclose(fid);
fid = fopen([path_input parameter_file{1}{1}],'r');
Ni = textscan(fid,'%d%s','Delimiter',',');%,'Whitespace','');
fclose(fid);
N = double(Ni{1});
options.lite = N(1); % lite version
options.calc_fluor = N(2); % calculate chlorophyll fluorescence in observation direction
options.calc_planck = N(3); % calculate spectrum of thermal radiation
options.calc_xanthophyllabs = N(4); % include simulation of reflectance dependence on de-epoxydation state
options.soilspectrum = N(5); % 0: use soil reflectance from file; 1: calculate soil reflectance with BSM
options.Fluorescence_model = N(6); %0: empirical, with sustained NPQ (fit to Flexas' data); 1: empirical, with sigmoid for Kn; 2: Magnani 2012 model
options.apply_T_corr = N(7); % correct Vcmax and rate constants for temperature in biochemical.m
options.verify = N(8);
options.saveCSV = N(9);
options.mSCOPE = N(10);
options.simulation = N(11); % 0: individual runs (specify all input in a this file)
% 1: time series (uses text files with meteo input as time series)
% 2: Lookup-Table (specify the values to be included)
% 3: Lookup-Table with random input (specify the ranges of values)
options.calc_directional = N(12); % 0: calculate full BRDF (many angles)
options.calc_vert_profiles = N(13);
options.soil_heat_method = N(14); % 0 - GAM=Soil_Inertia0(lambdas), 1 - GAM=Soil_Inertia1(SMC), 2 - G=0.35*Rn (always in no TS)
options.calc_rss_rbs = N(15); % 0 - fixed, 1 calc
options.MoninObukhov = N(16);
options.save_spectral = N(17);
if options.simulation>2 || options.simulation<0, fprintf('\n simulation option should be between 0 and 2 \r'); return, end
options.Cca_function_of_Cab = 0; % this will change to 1 if Cca is not provided in the input.
switch options.lite
case 0, integr = 'angles_and_layers';
otherwise, integr = 'layers';
end
%% 3. file names
f_names = {'Simulation_Name','soil_file','optipar_file','atmos_file', 'Dataset_dir',...
'meteo_ec_csv', 'vegetation_retrieved_csv', 'LIDF_file', 'verification_dir', ...
'mSCOPE_csv', 'nly'}; % must be in this order
cols = {'t', 'year', 'Rin','Rli', 'p','Ta','ea','u','RH', 'VPD', 'tts','tto', 'psi' ... % expected from EC file as well as ('Ca','SMC')
'Cab','Cca','Cdm','Cw','Cs','Cant','N'... % leaf
'SMC','BSMBrightness', 'BSMlat', 'BSMlon',... % soil
'LAI', 'hc', 'LIDFa', 'LIDFb',... % canopy
'z','Ca', ... % meteo
'Vcmax25', 'BallBerrySlope', 'fqe', ... % biochemistry;
'atmos_names' };
fnc = [f_names, cols];
F = struct('FileID', fnc);
fid = fopen([path_input parameter_file{1}{2}],'r');
while ~feof(fid)
line = fgetl(fid);
if ~isempty(line)
charline = char(line);
if ~(charline(1) == '%')
X = textscan(line,'%s%s','Delimiter', ',', 'Whitespace','\t');
x = X{1}; y = X{2};
k = find(strcmp(fnc,x{:}));
if ~isempty(k) && ~isempty(y)
F(k).FileName = y{:};
end
end
end
end
fclose(fid);
%% 4. input data
k = 1;
fid = fopen([path_input parameter_file{1}{3}], 'r');
clear('X')
while ~feof(fid)
line = fgetl(fid);
y = textscan(line,'%s', 'Delimiter', ',', 'TreatAsEmpty', ' ');
varnames(k) = y{1}(1); %#ok<SAGROW>
X(k).Val = str2double(y{:});
k = k+1;
end
fclose(fid);
V = assignvarnames();
for i = 1:length(V)
j = find(strcmp(varnames,V(i).Name));
if isempty(j)
if i==2
fprintf(1,'%s %s %s \n','warning: input "', V(i).Name, '" not provided in input data...');
fprintf(1,'%s %s %s\n', 'I will use 0.25*Cab instead');
options.Cca_function_of_Cab = 1;
else
if ~(options.simulation==1) && (i==30 || i==32)
fprintf(1,'%s %s %s \n','warning: input "', V(i).Name, '" not provided in input data...');
fprintf(1,'%s %s %s\n', 'I will use the MODTRAN spectrum as it is');
else
if (options.simulation == 1 || (~options.simulation && (i<46 || i>50 )))
fprintf(1,'%s %s %s \n','warning: input "', V(i).Name, '" not provided in input data');
if (options.simulation ==1)% && (i==1 ||i==9||i==22||i==23||i==54 || (i>29 && i<37)))
fprintf(1,'%s %s %s\n', 'I will look for the values in Dataset Directory "',F(5).FileName,'"');
else
if (i== 24 || i==25)
fprintf(1,'%s %s %s\n', 'will estimate it from LAI, CR, CD1, Psicor, and CSSOIL');
options.calc_zo = 1;
else
if (i>38 && i<44)
fprintf(1,'%s %s %s\n', 'will use the provided zo and d');
options.calc_zo = 0;
else
if ~((options.simulation ==1 && (i==30 ||i==32)))
fprintf(1,'%s \n', 'this input is required: SCOPE ends');
return
elseif (options.simulation ==1 && (i==30 ||i==32))
fprintf(1,'%s %s %s\n', '... no problem, I will find it in Dataset Directory "',F(5).FileName, '"');
end
end
end
end
end
end
end
else
k = find(~isnan(X(j).Val));
if ~isempty(k)
V(i).Val = X(j).Val(k);
else
V(i).Val = -999;
end
end
end
%% 6. Load spectral data for leaf and soil
load([path_input,'fluspect_parameters/', F(3).FileName]);
if options.soilspectrum ==0
rsfile = load([path_input,'soil_spectra/', F(2).FileName]); % file with soil reflectance spectra
end
%% 8. Define canopy structure and other 'fixed' parameters
canopy.nlincl = 13;
canopy.nlazi = 36;
canopy.litab = [ 5:10:75 81:2:89 ]'; % a column, never change the angles unless 'ladgen' is also adapted
canopy.lazitab = ( 5:10:355 ); % a row
soilemp.SMC = 25; % empirical parameter (fixed) for BSM
soilemp.film = 0.015; % empirical parameter (fixed) for BMS
LIDF_file = F(8).FileName;
if ~isempty(LIDF_file)
canopy.lidf = dlmread([path_input,'leafangles/',LIDF_file],'',3,0);
end
%% 10. Define spectral regions
[spectral] = define_bands;
%% 11. load time series data
if options.simulation == 1
vi = ones(length(V),1);
for k = 1:length(V)
if ~strcmp(V(k).Name, 'Tparam') && length(V(k).Val) > 1
warning('%s value from the first column of input_data will be used, time series mode', V(k).Name)
V(k).Val = V(k).Val(1);
end
end
[soil,leafbio,canopy,meteo,angles,xyt] = select_input(V,vi,canopy,options,constants);
[V, xyt, mly_ts, atmo_paths] = load_timeseries(V, F, xyt, path_input);
else
soil = struct;
end
%% 12. preparations
%% soil heat
if options.simulation==1
if options.soil_heat_method<2
if (isempty(meteo.Ta) || meteo.Ta<-273), meteo.Ta = 20; end
soil.Tsold = meteo.Ta*ones(12,2);
end
end
%% temperature sensitivity of photosynthesis parameters
leafbio.TDP = define_temp_response_biochem; % temperature response C3 and C4 according to CLM4 model
%% variables
nvars = length(V);
vmax = cellfun(@length, {V.Val})';
vmax(27,1) = 1; % these are Tparam and LIDFb
vi = ones(nvars,1);
switch options.simulation
case 0, telmax = max(vmax); [xyt.t,xyt.year]= deal(zeros(telmax,1));
case 1, telmax = size(xyt.t,1);
case 2, telmax = prod(double(vmax)); [xyt.t,xyt.year]= deal(zeros(telmax,1));
end
% [rad,thermal,fluxes] = initialize_output_structures(spectral);
if options.calc_directional
anglesfile = load([path_input,'directional/brdf_angles2.dat']); % Multiple observation angles in case of BRDF calculation
directional.tto = anglesfile(:,1); % [deg] Observation zenith Angles for calcbrdf
directional.psi = anglesfile(:,2); % [deg] Observation zenith Angles for calcbrdf
directional.noa = length(directional.tto); % Number of Observation Angles
else
directional = NaN;
end
%% irradiance
atmfile = fullfile(path_input, 'radiationdata', F(4).FileName);
if options.simulation == 1 && ~isempty(atmo_paths)
atmfile = atmo_paths{1};
end
atmo = load_atmo(atmfile, spectral.SCOPEspec);
%% 13. create output files
[Output_dir, f, fnames] = create_output_files_binary(parameter_file, F, path_of_code, path_input, spectral,options);
%% 14. Run the models
fprintf('\n Do not quench your inspiration and your imagination; do not become the slave of your model (Vincent van Gogh). \r')
fprintf('\n The calculations start now \r')
calculate = 1;
tic
for k = 1:telmax
if options.simulation == 1, vi(vmax>1) = k; end
if options.simulation == 0, vi(vmax==telmax) = k; end
[soil,leafbio,canopy,meteo,angles,xyt] = select_input(V,vi,canopy,options,constants,xyt,soil,leafbio);
canopy.nlayers = ceil(10*canopy.LAI) + ((meteo.Rin < 200) & options.MoninObukhov)*60;
canopy.nlayers = max(2, canopy.nlayers); % patch for LAI < 0.1
nl = canopy.nlayers;
x = (-1/nl : -1/nl : -1)'; % a column vector
canopy.xl = [0; x]; % add top level
% canopy.xl(1:end-1) = canopy.xl(1:end-1)+canopy.xl(1:end-1)-1/(2*nl); % middle of the thin layer
if options.simulation ~=1
fprintf('simulation %i ', k );
fprintf('of %i \n', telmax);
else
calculate = ~isnan(meteo.p*meteo.Ta*meteo.ea*meteo.u.*meteo.Rin.*meteo.Rli);
fprintf('time = %s: %i / %i\n', datestr(xyt.t(k)), k, telmax)
if isnan(meteo.p*meteo.Ta*meteo.ea*meteo.u.*meteo.Rin.*meteo.Rli)
[canopy, fluxes, rad, resistance, iter] = fill_output_with_nans(canopy, spectral);
warning('run is invalid: there is NaN somewhere in meteo input [p, Ta, ea, u, Rin, Rli]')
end
end
if calculate
if isempty(LIDF_file)
canopy.lidf = leafangles(canopy.LIDFa,canopy.LIDFb); % This is 'ladgen' in the original SAIL model,
end
%% leaf radiative transfer model FLUSPECT
leafbio.emis = 1-leafbio.rho_thermal-leafbio.tau_thermal;
leafbio.V2Z = 0;
if options.simulation == 1 && ~isempty(fieldnames(mly_ts)) % means that options.simulation == 1
mly.nly = mly_ts.nly;
mly.pLAI = mly_ts.pLAI(k, :);
mly.totLAI = sum(mly.pLAI);
mly.pCab = mly_ts.pCab(k, :);
mly.pCca = mly_ts.pCca(k, :);
mly.pCdm = mly_ts.pCw(k, :);
mly.pCw = mly_ts.pCw(k, :);
mly.pCs = mly_ts.pCs(k, :);
mly.pN = mly_ts.pN(k, :);
elseif k == 1 && options.mSCOPE
mly = input_mSCOPE(fullfile('input', 'mSCOPE.csv'));
else
if options.mSCOPE
warning('I do not know how to use mSCOPE layers with multiple but non time series runs, so I will not use it')
end
mly.nly = 1;
mly.pLAI = canopy.LAI;
mly.totLAI = canopy.LAI;
mly.pCab = leafbio.Cab;
mly.pCca = leafbio.Cca;
mly.pCdm = leafbio.Cdm;
mly.pCw = leafbio.Cw;
mly.pCs = leafbio.Cs;
mly.pN = leafbio.N;
end
if options.simulation == 1 && ~isempty(atmo_paths) && k > 1
atmfile_k = atmo_paths{k};
if ~strcmp(atmfile_k, atmo_paths{k-1})
atmo = load_atmo(atmfile_k, spectral.SCOPEspec);
end
end
leafopt = fluspect_mSCOPE(mly,spectral,leafbio,optipar, nl);
leafopt.refl(:, spectral.IwlT) = leafbio.rho_thermal;
leafopt.tran(:, spectral.IwlT) = leafbio.tau_thermal;
if options.calc_xanthophyllabs
leafbio.V2Z = 1;
leafoptZ = fluspect_mSCOPE(mly,spectral,leafbio,optipar, nl);
leafopt.reflZ = leafopt.refl;
leafopt.tranZ = leafopt.tran;
leafopt.reflZ(:, spectral.IwlP) = leafoptZ.refl(:, spectral.IwlP);
leafopt.tranZ(:, spectral.IwlP) = leafoptZ.tran(:, spectral.IwlP);
end
%% soil reflectance model BSM
if options.soilspectrum == 0
soil.refl = rsfile(:,soil.spectrum+1);
else
soil.refl = BSM(soil,optipar,soilemp);
end
soil.refl(spectral.IwlT) = soil.rs_thermal;
%% four stream canopy radiative transfer model for incident radiation
[rad,gap,profiles] = RTMo(spectral,atmo,soil,leafopt,canopy,angles,constants,meteo,options);
%% energy balance
[iter,rad,thermal,soil,bcu,bch,fluxes,resistance,meteo] ...
= ebal(constants,options,rad,gap, ...
meteo,soil,canopy,leafbio, k, xyt,integr);
%% fluorescence radiative transfer model
if options.calc_fluor
[rad] = RTMf(constants,spectral,rad,soil,leafopt,canopy,gap,angles,bcu.eta,bch.eta);
end
%% radiative transfer model for PRI effects
if options.calc_xanthophyllabs
% comment the following four lines out (CT 20230119)
% Ps = gap.Ps(1:nl);
% Ph = (1-Ps);
% Kn = (meanleaf(canopy,bch.Kn,'layers',Ph)+meanleaf(canopy,bcu.Kn,integr,Ps)); %
% [rad] = RTMz(constants,spectral,rad,soil,leafopt,canopy,gap,angles,bcu.Kn*0+Kn,bch.Kn*0+Kn);
[rad] = RTMz(constants,spectral,rad,soil,leafopt,canopy,gap,angles,bcu.Kn,bch.Kn);
end
rad = RTMt_sb(constants,rad,soil,leafbio,canopy,gap,thermal.Tcu,thermal.Tch,thermal.Tsu,thermal.Tsh,1,spectral);
if options.calc_planck
rad = RTMt_planck(spectral,rad,soil,leafopt,canopy,gap,thermal.Tcu,thermal.Tch,thermal.Tsu,thermal.Tsh);
end
%% computation of data products
% aPAR, LST, NPQ, ETR, photosynthesis, SIF-reabsorption correction
% aPAR [umol m-2 s-1, total canopy and total chlorphyll]
Ps = gap.Ps(1:nl);
Ph = (1-Ps);
canopy.LAIsunlit = canopy.LAI*mean(Ps);
canopy.LAIshaded = canopy.LAI-canopy.LAIsunlit;
canopy.Pnsun_Cab = canopy.LAI*meanleaf(canopy,rad.Pnu_Cab,integr,Ps); % net PAR Cab sunlit leaves (photons)
canopy.Pnsha_Cab = canopy.LAI*meanleaf(canopy,rad.Pnh_Cab,'layers',Ph); % net PAR Cab shaded leaves (photons)
canopy.Pntot_Cab = canopy.Pnsun_Cab+canopy.Pnsha_Cab; % net PAR Cab leaves (photons)
canopy.Pnsun_Car = canopy.LAI*meanleaf(canopy,rad.Pnu_Car,integr,Ps); % net PAR Cab sunlit leaves (photons)
canopy.Pnsha_Car = canopy.LAI*meanleaf(canopy,rad.Pnh_Car,'layers',Ph); % net PAR Cab shaded leaves (photons)
canopy.Pntot_Car = canopy.Pnsun_Car+canopy.Pnsha_Car; % net PAR Cab leaves (photons)
canopy.Pnsun = canopy.LAI*meanleaf(canopy,rad.Pnu,integr,Ps); % net PAR sunlit leaves (photons)
canopy.Pnsha = canopy.LAI*meanleaf(canopy,rad.Pnh,'layers',Ph); % net PAR shaded leaves (photons)
canopy.Pntot = canopy.Pnsun+canopy.Pnsha; % net PAR leaves (photons)
canopy.Rnsun_Cab = canopy.LAI*meanleaf(canopy,rad.Rnu_Cab,integr,Ps); % net PAR Cab sunlit leaves (radiance)
canopy.Rnsha_Cab = canopy.LAI*meanleaf(canopy,rad.Rnh_Cab,'layers',Ph); % net PAR Cab sunlit leaves (radiance)
canopy.Rntot_Cab = canopy.Rnsun_Cab+canopy.Rnsha_Cab; % net PAR Cab leaves (radiance)
canopy.Rnsun_Car = canopy.LAI*meanleaf(canopy,rad.Rnu_Car,integr,Ps); % net PAR Cab sunlit leaves (radiance)
canopy.Rnsha_Car = canopy.LAI*meanleaf(canopy,rad.Rnh_Car,'layers',Ph); % net PAR Cab sunlit leaves (radiance)
canopy.Rntot_Car = canopy.Rnsun_Car+canopy.Rnsha_Car; % net PAR Cab leaves (radiance)
canopy.Rnsun_PAR = canopy.LAI*meanleaf(canopy,rad.Rnu_PAR,integr,Ps); % net PAR sunlit leaves (radiance)
canopy.Rnsha_PAR = canopy.LAI*meanleaf(canopy,rad.Rnh_PAR,'layers',Ph); % net PAR sunlit leaves (radiance)
canopy.Rntot_PAR = canopy.Rnsun_PAR+canopy.Rnsha_PAR; % net PAR leaves (radiance)
% LST [K] (directional, but assuming black-body surface!)
canopy.LST = (pi*(rad.Lot+rad.Lote)./(constants.sigmaSB*rad.canopyemis)).^0.25;
canopy.emis = rad.canopyemis;
% photosynthesis [mumol CO2 m-2 s-1]
canopy.A = canopy.LAI*(meanleaf(canopy,bch.A,'layers',Ph)+meanleaf(canopy,bcu.A,integr,Ps)); % net photosynthesis of leaves
canopy.GPP = canopy.LAI*(meanleaf(canopy,bch.Ag,'layers',Ph)+meanleaf(canopy,bcu.Ag,integr,Ps)); % gross photosynthesis
% electron transport rate [mumol m-2 s-1]
canopy.Ja = canopy.LAI*(meanleaf(canopy,bch.Ja,'layers',Ph)+meanleaf(canopy,bcu.Ja,integr,Ps)); % electron transport
% non-photochemical quenching (energy) [W m-2]
canopy.ENPQ = canopy.LAI*(meanleaf(canopy,rad.Rnh_Cab.*bch.Phi_N,'layers',Ph)+meanleaf(canopy,rad.Rnu_Cab.*bcu.Phi_N,integr,Ps)); % NPQ energy;
canopy.PNPQ = canopy.LAI*(meanleaf(canopy,rad.Pnh_Cab.*bch.Phi_N,'layers',Ph)+meanleaf(canopy,rad.Pnu_Cab.*bcu.Phi_N,integr,Ps)); % NPQ energy;
% computation of re-absorption corrected fluorescence
% Yang and Van der Tol (2019); Van der Tol et al. (2019)
%aPAR_Cab_eta = canopy.LAI*(meanleaf(canopy,bch.eta .* rad.Rnh_Cab,'layers',Ph)+meanleaf(canopy,bcu.eta .* rad.Rnu_Cab,integr,Ps)); %
aPAR_Cab_eta = canopy.LAI*(meanleaf(canopy,bch.eta .* rad.Pnh_Cab,'layers',Ph)+meanleaf(canopy,bcu.eta .* rad.Pnu_Cab,integr,Ps)); %
if options.calc_fluor
ep = constants.A*ephoton(spectral.wlF'*1E-9,constants);
rad.PoutFrc = leafbio.fqe*aPAR_Cab_eta;
rad.EoutFrc_ = 1E-3*ep.*(rad.PoutFrc*optipar.phi(spectral.IwlF)); %1E-6: umol2mol, 1E3: nm-1 to um-1
rad.EoutFrc = 1E-3*Sint(rad.EoutFrc_,spectral.wlF);
sigmaF = pi*rad.LoF_./rad.EoutFrc_;
rad.sigmaF = interp1(spectral.wlF(1:4:end),sigmaF(1:4:end),spectral.wlF);
canopy.fqe = rad.PoutFrc./canopy.Pntot_Cab;
else
canopy.fqe = nan;
end
rad.Lotot_ = rad.Lo_+rad.Lot_;
rad.Eout_ = rad.Eout_+rad.Eoutte_;
if options.calc_fluor
rad.Lototf_ = rad.Lotot_;
rad.Lototf_(spectral.IwlF') = rad.Lototf_(spectral.IwlF)+rad.LoF_;
rad.reflapp = rad.refl;
rad.reflapp(spectral.IwlF) =pi*rad.Lototf_(spectral.IwlF)./(rad.Esun_(spectral.IwlF)+rad.Esky_(spectral.IwlF));
end
if options.calc_directional
directional = calc_brdf(constants,options,directional,spectral,angles,atmo,soil,leafopt,canopy,meteo,thermal,bcu,bch);
savebrdfoutput(options,directional,angles,spectral,Output_dir)
end
rad.Lo = 0.001 * Sint(rad.Lo_(spectral.IwlP),spectral.wlP);
end
%% write output
n_col = output_data_binary(f, k, xyt, rad, canopy, V, vi, vmax, options, fluxes, meteo, iter,resistance);
%% update input
if options.simulation==2 && telmax>1, vi = count_k(nvars,vi,vmax,1); end
end
toc
fclose('all');
if options.saveCSV
bin_to_csv(fnames, V, vmax, n_col, telmax)
end
if options.verify
output_verification_csv(Output_dir, F(9).FileName)
end
% catch ME
% ME.getReport
% end
% result = input('Press Enter key to exit');