-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathexp_model_list.py
804 lines (785 loc) · 45.2 KB
/
exp_model_list.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
from sklearn.ensemble import ExtraTreesClassifier, RandomForestClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.neural_network import MLPClassifier
from sklearn.tree import ExtraTreeClassifier
from skmultilearn.adapt import MLkNN
from skmultilearn.ensemble import RakelD
from datasources.paths_manager import SAVED_MODEL, PATH_SIGNAL2VEC
from nilmlab.factories import TransformerFactory
from nilmlab.lab import TransformerType
SAX = 'SAX'
SAX1D = 'SAX1D'
SFA = 'SFA'
DFT = 'DFT'
PAA = 'PAA'
WEASEL = 'WEASEL'
SIGNAL2VEC = 'SIGNAL2VEC'
TRANSFORMER_MODELS = 'TRANSFORMER_MODELS'
CLF_MODELS = 'CLF_MODELS'
BOSS = 'BOSS'
TIME_DELAY_EMBEDDING = 'TIME_DELAY_EMBEDDING'
WAVELETS = 'WAVELETS'
selected_models_10mins = {
BOSS : {
CLF_MODELS : [
MLPClassifier(hidden_layer_sizes=(2000, 100, 100), learning_rate='adaptive', solver='adam')
],
TRANSFORMER_MODELS: [
TransformerFactory.build_pyts_boss(word_size=4, n_bins=20, window_size=10, norm_mean=False,
norm_std=False)
]
},
SIGNAL2VEC: {
CLF_MODELS : [
MLPClassifier(hidden_layer_sizes=(1000,), learning_rate='adaptive', solver='adam', activation='logistic')
],
TRANSFORMER_MODELS: [
TransformerFactory.build_signal2vec(SAVED_MODEL, PATH_SIGNAL2VEC, num_of_vectors=1)
]
},
PAA : {
CLF_MODELS : [
ExtraTreesClassifier(n_jobs=-1, n_estimators=500)
],
TRANSFORMER_MODELS: [
TransformerFactory.build_tslearn_paa(n_paa_segments=10, supports_approximation=True)
]
},
DFT : {
CLF_MODELS : [
ExtraTreesClassifier(n_jobs=-1, n_estimators=500)
],
TRANSFORMER_MODELS: [
TransformerFactory.build_pyts_dft(n_coefs=10, norm_mean=False, norm_std=False,
supports_approximation=True)
]
},
SFA : {
CLF_MODELS : [
MLPClassifier(hidden_layer_sizes=(2000, 100, 100), learning_rate='adaptive', solver='adam')
],
TRANSFORMER_MODELS: [
TransformerFactory.build_pyts_sfa(n_coefs=10, n_bins=5, norm_mean=False, norm_std=False)
]
},
SAX1D : {
CLF_MODELS : [
RandomForestClassifier(n_jobs=-1, n_estimators=100)
],
TRANSFORMER_MODELS: [
TransformerFactory.build_tslearn_one_d_sax(n_paa_segments=50, n_sax_symbols=10)
]
},
SAX : {
CLF_MODELS : [
MLPClassifier(hidden_layer_sizes=(2000), learning_rate='adaptive', solver='adam')
],
TRANSFORMER_MODELS: [
TransformerFactory.build_tslearn_sax(n_paa_segments=50, n_sax_symbols=50, supports_approximation=True)
]
}
}
selected_models_4h = {
BOSS : {
CLF_MODELS : [
MLPClassifier(hidden_layer_sizes=(1000, 100), learning_rate='adaptive', solver='adam',
activation='logistic'),
MLPClassifier(hidden_layer_sizes=(1000, 100), learning_rate='adaptive', solver='adam',
activation='logistic'),
MLPClassifier(hidden_layer_sizes=(100,), learning_rate='adaptive', solver='adam', activation='logistic'),
MLPClassifier(hidden_layer_sizes=(100, 100), learning_rate='adaptive', solver='adam',
activation='logistic')
],
TRANSFORMER_MODELS: [
TransformerFactory.build_pyts_boss(word_size=2, n_bins=26, window_size=10, norm_mean=False,
norm_std=False),
TransformerFactory.build_pyts_boss(word_size=2, n_bins=25, window_size=10, norm_mean=False,
norm_std=False),
TransformerFactory.build_pyts_boss(word_size=2, n_bins=26, window_size=10, norm_mean=False,
norm_std=False),
TransformerFactory.build_pyts_boss(word_size=2, n_bins=26, window_size=10, norm_mean=False,
norm_std=False)
]
},
SIGNAL2VEC: {
CLF_MODELS : [
MLPClassifier(hidden_layer_sizes=(1000, 100), learning_rate='adaptive', solver='adam',
activation='logistic'),
MLPClassifier(hidden_layer_sizes=(1000,), learning_rate='adaptive', solver='adam', activation='logistic'),
MLPClassifier(hidden_layer_sizes=(1000,), learning_rate='adaptive', solver='adam'),
MLPClassifier(hidden_layer_sizes=(100, 100, 100), learning_rate='adaptive', solver='adam'),
],
TRANSFORMER_MODELS: [
TransformerFactory.build_signal2vec(SAVED_MODEL, PATH_SIGNAL2VEC, num_of_vectors=5),
TransformerFactory.build_signal2vec(SAVED_MODEL, PATH_SIGNAL2VEC, num_of_vectors=10),
TransformerFactory.build_signal2vec(SAVED_MODEL, PATH_SIGNAL2VEC, num_of_vectors=10),
TransformerFactory.build_signal2vec(SAVED_MODEL, PATH_SIGNAL2VEC, num_of_vectors=10)
]
},
WEASEL : {
CLF_MODELS : [
MLPClassifier(hidden_layer_sizes=(100,), learning_rate='adaptive', solver='adam'),
MLPClassifier(hidden_layer_sizes=(1000,), learning_rate='adaptive', solver='adam', activation='logistic'),
MLPClassifier(hidden_layer_sizes=(100,), learning_rate='adaptive', solver='adam', activation='logistic'),
MLPClassifier(hidden_layer_sizes=(100, 100, 100), learning_rate='adaptive', solver='adam')
],
TRANSFORMER_MODELS: [
TransformerFactory.build_pyts_weasel(word_size=2, n_bins=4, norm_mean=False, norm_std=False),
TransformerFactory.build_pyts_weasel(word_size=2, n_bins=4, norm_mean=False, norm_std=False),
TransformerFactory.build_pyts_weasel(word_size=2, n_bins=4, norm_mean=False, norm_std=False),
TransformerFactory.build_pyts_weasel(word_size=2, n_bins=4, norm_mean=False, norm_std=False)
]
},
PAA : {
CLF_MODELS : [
ExtraTreesClassifier(n_jobs=-1, n_estimators=200),
ExtraTreesClassifier(n_jobs=-1, n_estimators=1000),
ExtraTreesClassifier(n_jobs=-1, n_estimators=2000),
ExtraTreesClassifier(n_jobs=-1, n_estimators=500)
],
TRANSFORMER_MODELS: [
TransformerFactory.build_tslearn_paa(n_paa_segments=10, supports_approximation=True),
TransformerFactory.build_tslearn_paa(n_paa_segments=10, supports_approximation=True),
TransformerFactory.build_tslearn_paa(n_paa_segments=10, supports_approximation=True),
TransformerFactory.build_tslearn_paa(n_paa_segments=10, supports_approximation=True)
]
},
DFT : {
CLF_MODELS : [
ExtraTreesClassifier(n_jobs=-1, n_estimators=200),
ExtraTreesClassifier(n_jobs=-1, n_estimators=1000),
ExtraTreesClassifier(n_jobs=-1, n_estimators=2000),
ExtraTreesClassifier(n_jobs=-1, n_estimators=500)
],
TRANSFORMER_MODELS: [
TransformerFactory.build_pyts_dft(n_coefs=10, norm_mean=False, norm_std=False,
supports_approximation=True),
TransformerFactory.build_pyts_dft(n_coefs=10, norm_mean=False, norm_std=False,
supports_approximation=True),
TransformerFactory.build_pyts_dft(n_coefs=10, norm_mean=False, norm_std=False,
supports_approximation=True),
TransformerFactory.build_pyts_dft(n_coefs=10, norm_mean=False, norm_std=False,
supports_approximation=True)
]
},
SFA : {
CLF_MODELS : [
ExtraTreesClassifier(n_jobs=-1, n_estimators=500),
ExtraTreesClassifier(n_jobs=-1, n_estimators=2000),
ExtraTreesClassifier(n_jobs=-1, n_estimators=1000),
MLPClassifier(hidden_layer_sizes=(1000, 100), learning_rate='adaptive', solver='adam'),
],
TRANSFORMER_MODELS: [
TransformerFactory.build_pyts_sfa(n_coefs=10, n_bins=9, norm_mean=False, norm_std=False),
TransformerFactory.build_pyts_sfa(n_coefs=10, n_bins=9, norm_mean=False, norm_std=False),
TransformerFactory.build_pyts_sfa(n_coefs=10, n_bins=9, norm_mean=False, norm_std=False),
TransformerFactory.build_pyts_sfa(n_coefs=10, n_bins=9, norm_mean=False, norm_std=False)
]
},
SAX1D : {
CLF_MODELS : [
MLPClassifier(hidden_layer_sizes=(1000,), learning_rate='adaptive', solver='adam'),
ExtraTreeClassifier(),
ExtraTreeClassifier(),
ExtraTreesClassifier(n_jobs=-1, n_estimators=100)
],
TRANSFORMER_MODELS: [
TransformerFactory.build_tslearn_one_d_sax(n_paa_segments=50, n_sax_symbols=20),
TransformerFactory.build_tslearn_one_d_sax(n_paa_segments=50, n_sax_symbols=20),
TransformerFactory.build_tslearn_one_d_sax(n_paa_segments=50, n_sax_symbols=10),
TransformerFactory.build_tslearn_one_d_sax(n_paa_segments=50, n_sax_symbols=50)
]
},
SAX : {
CLF_MODELS : [
MLPClassifier(hidden_layer_sizes=(1000,), learning_rate='adaptive', solver='adam'),
MLPClassifier(hidden_layer_sizes=(100,), learning_rate='adaptive', solver='adam'),
MLPClassifier(hidden_layer_sizes=(100,), learning_rate='adaptive', solver='adam'),
MLPClassifier(hidden_layer_sizes=(1000, 100), learning_rate='adaptive', solver='adam')
],
TRANSFORMER_MODELS: [
TransformerFactory.build_tslearn_sax(n_paa_segments=50, n_sax_symbols=50, supports_approximation=True),
TransformerFactory.build_tslearn_sax(n_paa_segments=50, n_sax_symbols=10, supports_approximation=True),
TransformerFactory.build_tslearn_sax(n_paa_segments=20, n_sax_symbols=50, supports_approximation=True),
TransformerFactory.build_tslearn_sax(n_paa_segments=20, n_sax_symbols=10, supports_approximation=True)
]
}
}
selected_models_8h = {
BOSS : {
CLF_MODELS : [
MLPClassifier(hidden_layer_sizes=(2000, 100), learning_rate='adaptive', solver='adam',
activation='logistic'),
MLPClassifier(hidden_layer_sizes=(1000,), learning_rate='adaptive', solver='adam', activation='logistic'),
MLPClassifier(hidden_layer_sizes=(2000, 100), learning_rate='adaptive', solver='adam',
activation='logistic'),
MLPClassifier(hidden_layer_sizes=(1000, 100), learning_rate='adaptive', solver='adam',
activation='logistic')
],
TRANSFORMER_MODELS: [
TransformerFactory.build_pyts_boss(word_size=2, n_bins=20, window_size=10, norm_mean=False,
norm_std=False),
TransformerFactory.build_pyts_boss(word_size=2, n_bins=20, window_size=10, norm_mean=False,
norm_std=False),
TransformerFactory.build_pyts_boss(word_size=4, n_bins=10, window_size=10, norm_mean=False,
norm_std=False),
TransformerFactory.build_pyts_boss(word_size=4, n_bins=10, window_size=10, norm_mean=False,
norm_std=False)
]
},
SIGNAL2VEC: {
CLF_MODELS : [
MLPClassifier(hidden_layer_sizes=(2000, 100), learning_rate='adaptive', solver='adam'),
MLPClassifier(hidden_layer_sizes=(100, 100, 100), learning_rate='adaptive', solver='adam'),
MLPClassifier(hidden_layer_sizes=(1000, 100), learning_rate='adaptive', solver='adam'),
MLPClassifier(hidden_layer_sizes=(1000,), learning_rate='adaptive', solver='adam', activation='logistic')
],
TRANSFORMER_MODELS: [
TransformerFactory.build_signal2vec(SAVED_MODEL, PATH_SIGNAL2VEC, num_of_vectors=50),
TransformerFactory.build_signal2vec(SAVED_MODEL, PATH_SIGNAL2VEC, num_of_vectors=4),
TransformerFactory.build_signal2vec(SAVED_MODEL, PATH_SIGNAL2VEC, num_of_vectors=1),
TransformerFactory.build_signal2vec(SAVED_MODEL, PATH_SIGNAL2VEC, num_of_vectors=5)
]
},
WEASEL : {
CLF_MODELS : [
MLPClassifier(hidden_layer_sizes=(2000), learning_rate='adaptive', solver='adam', activation='logistic'),
MLPClassifier(hidden_layer_sizes=(100, 100, 100), learning_rate='adaptive', solver='adam'),
MLPClassifier(hidden_layer_sizes=(2000, 100, 100), learning_rate='adaptive', solver='adam'),
MLPClassifier(hidden_layer_sizes=(100, 100), learning_rate='adaptive', solver='adam')
],
TRANSFORMER_MODELS: [
TransformerFactory.build_pyts_weasel(word_size=2, n_bins=4, norm_mean=False, norm_std=False),
TransformerFactory.build_pyts_weasel(word_size=2, n_bins=4, norm_mean=False, norm_std=False),
TransformerFactory.build_pyts_weasel(word_size=2, n_bins=4, norm_mean=False, norm_std=False),
TransformerFactory.build_pyts_weasel(word_size=2, n_bins=4, norm_mean=False, norm_std=False)
]
},
PAA : {
CLF_MODELS : [
ExtraTreesClassifier(n_jobs=-1, n_estimators=1000),
ExtraTreesClassifier(n_jobs=-1, n_estimators=500),
ExtraTreesClassifier(n_jobs=-1, n_estimators=2000),
ExtraTreesClassifier(n_jobs=-1, n_estimators=200)
],
TRANSFORMER_MODELS: [
TransformerFactory.build_tslearn_paa(n_paa_segments=10, supports_approximation=True),
TransformerFactory.build_tslearn_paa(n_paa_segments=10, supports_approximation=True),
TransformerFactory.build_tslearn_paa(n_paa_segments=10, supports_approximation=True),
TransformerFactory.build_tslearn_paa(n_paa_segments=10, supports_approximation=True)
]
},
DFT : {
CLF_MODELS : [
ExtraTreesClassifier(n_jobs=-1, n_estimators=500),
RandomForestClassifier(n_jobs=-1, n_estimators=100),
ExtraTreesClassifier(n_jobs=-1, n_estimators=100),
ExtraTreesClassifier(n_jobs=-1, n_estimators=2000)
],
TRANSFORMER_MODELS: [
TransformerFactory.build_pyts_dft(n_coefs=10, norm_mean=False, norm_std=False,
supports_approximation=True),
TransformerFactory.build_pyts_dft(n_coefs=10, norm_mean=False, norm_std=False,
supports_approximation=True),
TransformerFactory.build_pyts_dft(n_coefs=10, norm_mean=False, norm_std=False,
supports_approximation=True),
TransformerFactory.build_pyts_dft(n_coefs=10, norm_mean=False, norm_std=False,
supports_approximation=True)
]
},
SFA : {
CLF_MODELS : [
MLPClassifier(hidden_layer_sizes=(100, 50, 100, 50), learning_rate='adaptive', solver='adam'),
MLPClassifier(hidden_layer_sizes=(100, 100, 100), learning_rate='adaptive', solver='adam'),
MLPClassifier(hidden_layer_sizes=(1000,), learning_rate='adaptive', solver='adam'),
MLPClassifier(hidden_layer_sizes=(2000), learning_rate='adaptive', solver='adam')
],
TRANSFORMER_MODELS: [
TransformerFactory.build_pyts_sfa(n_coefs=10, n_bins=5, norm_mean=False, norm_std=False),
TransformerFactory.build_pyts_sfa(n_coefs=10, n_bins=5, norm_mean=False, norm_std=False),
TransformerFactory.build_pyts_sfa(n_coefs=10, n_bins=5, norm_mean=False, norm_std=False),
TransformerFactory.build_pyts_sfa(n_coefs=10, n_bins=5, norm_mean=False, norm_std=False)
]
},
SAX1D : {
CLF_MODELS : [
MLPClassifier(hidden_layer_sizes=(100, 50, 100, 50), learning_rate='adaptive', solver='adam'),
MLPClassifier(hidden_layer_sizes=(100, 100), learning_rate='adaptive', solver='adam'),
MLPClassifier(hidden_layer_sizes=(2000), learning_rate='adaptive', solver='adam'),
MLPClassifier(hidden_layer_sizes=(1000,), learning_rate='adaptive', solver='adam')
],
TRANSFORMER_MODELS: [
TransformerFactory.build_tslearn_one_d_sax(n_paa_segments=50, n_sax_symbols=10),
TransformerFactory.build_tslearn_one_d_sax(n_paa_segments=50, n_sax_symbols=10),
TransformerFactory.build_tslearn_one_d_sax(n_paa_segments=50, n_sax_symbols=10),
TransformerFactory.build_tslearn_one_d_sax(n_paa_segments=50, n_sax_symbols=20)
]
},
SAX : {
CLF_MODELS : [
MLPClassifier(hidden_layer_sizes=(2000, 100), learning_rate='adaptive', solver='adam'),
MLPClassifier(hidden_layer_sizes=(2000), learning_rate='adaptive', solver='adam'),
MLPClassifier(hidden_layer_sizes=(2000, 100), learning_rate='adaptive', solver='adam'),
MLPClassifier(hidden_layer_sizes=(2000), learning_rate='adaptive', solver='adam')
],
TRANSFORMER_MODELS: [
TransformerFactory.build_tslearn_sax(n_paa_segments=50, n_sax_symbols=100, supports_approximation=False),
TransformerFactory.build_tslearn_sax(n_paa_segments=50, n_sax_symbols=10, supports_approximation=False),
TransformerFactory.build_tslearn_sax(n_paa_segments=10, n_sax_symbols=20, supports_approximation=False),
TransformerFactory.build_tslearn_sax(n_paa_segments=50, n_sax_symbols=20, supports_approximation=True)
]
}
}
selected_models_1h = {
BOSS : {
CLF_MODELS : [
MLPClassifier(hidden_layer_sizes=(100, 100, 100), learning_rate='adaptive', solver='adam',
activation='logistic'),
MLPClassifier(hidden_layer_sizes=(2000, 100, 100), learning_rate='adaptive', solver='adam',
activation='logistic'),
MLPClassifier(hidden_layer_sizes=(2000, 100), learning_rate='adaptive', solver='adam',
activation='logistic'),
MLPClassifier(hidden_layer_sizes=(1000, 100), learning_rate='adaptive', solver='adam',
activation='logistic')
],
TRANSFORMER_MODELS: [
TransformerFactory.build_pyts_boss(word_size=4, n_bins=20, window_size=10, norm_mean=False,
norm_std=False),
TransformerFactory.build_pyts_boss(word_size=2, n_bins=20, window_size=10, norm_mean=False,
norm_std=False),
TransformerFactory.build_pyts_boss(word_size=2, n_bins=20, window_size=10, norm_mean=False,
norm_std=False),
TransformerFactory.build_pyts_boss(word_size=2, n_bins=20, window_size=10, norm_mean=False,
norm_std=False)
]
},
SIGNAL2VEC: {
CLF_MODELS : [
MLPClassifier(hidden_layer_sizes=(1000, 100), learning_rate='adaptive', solver='adam',
activation='logistic'),
MLPClassifier(hidden_layer_sizes=(1000, 100), learning_rate='adaptive', solver='adam',
activation='logistic'),
MLPClassifier(hidden_layer_sizes=(2000, 100), learning_rate='adaptive', solver='adam',
activation='logistic'),
MLPClassifier(hidden_layer_sizes=(1000, 100), learning_rate='adaptive', solver='adam',
activation='logistic')
],
TRANSFORMER_MODELS: [
TransformerFactory.build_signal2vec(SAVED_MODEL, PATH_SIGNAL2VEC, num_of_vectors=2),
TransformerFactory.build_signal2vec(SAVED_MODEL, PATH_SIGNAL2VEC, num_of_vectors=4),
TransformerFactory.build_signal2vec(SAVED_MODEL, PATH_SIGNAL2VEC, num_of_vectors=4),
TransformerFactory.build_signal2vec(SAVED_MODEL, PATH_SIGNAL2VEC, num_of_vectors=1)
]
},
WEASEL : {
CLF_MODELS : [
MLPClassifier(hidden_layer_sizes=(1000,), learning_rate='adaptive', solver='adam', activation='logistic'),
MLPClassifier(hidden_layer_sizes=(2000), learning_rate='adaptive', solver='adam', activation='logistic'),
MLPClassifier(hidden_layer_sizes=(100, 50, 100, 50), learning_rate='adaptive', solver='adam'),
MLPClassifier(hidden_layer_sizes=(100,), learning_rate='adaptive', solver='adam', activation='logistic')
],
TRANSFORMER_MODELS: [
TransformerFactory.build_pyts_weasel(word_size=2, n_bins=4, norm_mean=False, norm_std=False),
TransformerFactory.build_pyts_weasel(word_size=2, n_bins=4, norm_mean=False, norm_std=False),
TransformerFactory.build_pyts_weasel(word_size=2, n_bins=4, norm_mean=False, norm_std=False),
TransformerFactory.build_pyts_weasel(word_size=2, n_bins=4, norm_mean=False, norm_std=False)
]
},
PAA : {
CLF_MODELS : [
MLPClassifier(hidden_layer_sizes=(100, 100, 100), learning_rate='adaptive', solver='adam'),
MLPClassifier(hidden_layer_sizes=(2000, 100, 100), learning_rate='adaptive', solver='adam'),
ExtraTreesClassifier(n_jobs=-1, n_estimators=100),
MLPClassifier(hidden_layer_sizes=(100, 50, 100, 50), learning_rate='adaptive', solver='adam')
],
TRANSFORMER_MODELS: [
TransformerFactory.build_tslearn_paa(n_paa_segments=10, supports_approximation=True),
TransformerFactory.build_tslearn_paa(n_paa_segments=10, supports_approximation=True),
TransformerFactory.build_tslearn_paa(n_paa_segments=10, supports_approximation=True),
TransformerFactory.build_tslearn_paa(n_paa_segments=10, supports_approximation=True)
]
},
DFT : {
CLF_MODELS : [
ExtraTreesClassifier(n_jobs=-1, n_estimators=100),
RandomForestClassifier(n_jobs=-1, n_estimators=100),
ExtraTreesClassifier(n_jobs=-1, n_estimators=500),
ExtraTreesClassifier(n_jobs=-1, n_estimators=1000)
],
TRANSFORMER_MODELS: [
TransformerFactory.build_pyts_dft(n_coefs=10, norm_mean=False, norm_std=False,
supports_approximation=True),
TransformerFactory.build_pyts_dft(n_coefs=10, norm_mean=False, norm_std=False,
supports_approximation=True),
TransformerFactory.build_pyts_dft(n_coefs=10, norm_mean=False, norm_std=False,
supports_approximation=True),
TransformerFactory.build_pyts_dft(n_coefs=10, norm_mean=False, norm_std=False,
supports_approximation=True),
]
},
SFA : {
CLF_MODELS : [
MLPClassifier(hidden_layer_sizes=(2000, 100, 100), learning_rate='adaptive', solver='adam'),
MLPClassifier(hidden_layer_sizes=(1000, 2000, 100), learning_rate='adaptive', solver='adam'),
MLPClassifier(hidden_layer_sizes=(2000, 100), learning_rate='adaptive', solver='adam'),
MLPClassifier(hidden_layer_sizes=(1000, 100), learning_rate='adaptive', solver='adam')
],
TRANSFORMER_MODELS: [
TransformerFactory.build_pyts_sfa(n_coefs=10, n_bins=5, norm_mean=False, norm_std=False),
TransformerFactory.build_pyts_sfa(n_coefs=10, n_bins=5, norm_mean=False, norm_std=False),
TransformerFactory.build_pyts_sfa(n_coefs=10, n_bins=5, norm_mean=False, norm_std=False),
TransformerFactory.build_pyts_sfa(n_coefs=10, n_bins=5, norm_mean=False, norm_std=False)
]
},
SAX1D : {
CLF_MODELS : [
ExtraTreesClassifier(n_jobs=-1, n_estimators=100),
ExtraTreesClassifier(n_jobs=-1, n_estimators=200),
RandomForestClassifier(n_jobs=-1, n_estimators=100),
ExtraTreesClassifier(n_jobs=-1, n_estimators=200)
],
TRANSFORMER_MODELS: [
TransformerFactory.build_tslearn_one_d_sax(n_paa_segments=50, n_sax_symbols=50),
TransformerFactory.build_tslearn_one_d_sax(n_paa_segments=50, n_sax_symbols=10),
TransformerFactory.build_tslearn_one_d_sax(n_paa_segments=50, n_sax_symbols=10),
TransformerFactory.build_tslearn_one_d_sax(n_paa_segments=50, n_sax_symbols=50)
]
},
SAX : {
CLF_MODELS : [
MLPClassifier(hidden_layer_sizes=(100,), learning_rate='adaptive', solver='adam'),
MLPClassifier(hidden_layer_sizes=(2000), learning_rate='adaptive', solver='adam'),
MLPClassifier(hidden_layer_sizes=(100, 100, 100), learning_rate='adaptive', solver='adam'),
MLPClassifier(hidden_layer_sizes=(1000,), learning_rate='adaptive', solver='adam'),
],
TRANSFORMER_MODELS: [
TransformerFactory.build_tslearn_sax(n_paa_segments=20, n_sax_symbols=10, supports_approximation=True),
TransformerFactory.build_tslearn_sax(n_paa_segments=20, n_sax_symbols=50, supports_approximation=True),
TransformerFactory.build_tslearn_sax(n_paa_segments=50, n_sax_symbols=10, supports_approximation=True),
TransformerFactory.build_tslearn_sax(n_paa_segments=50, n_sax_symbols=50, supports_approximation=True)
]
}
}
selected_models_2h = {
BOSS : {
CLF_MODELS : [
MLPClassifier(hidden_layer_sizes=(2000, 100), learning_rate='adaptive', solver='adam',
activation='logistic'),
MLPClassifier(hidden_layer_sizes=(1000, 100), learning_rate='adaptive', solver='adam',
activation='logistic'),
MLPClassifier(hidden_layer_sizes=(1000, 2000, 100), learning_rate='adaptive', solver='adam',
activation='logistic'),
MLPClassifier(hidden_layer_sizes=(100,), learning_rate='adaptive', solver='adam', activation='logistic')
],
TRANSFORMER_MODELS: [
TransformerFactory.build_pyts_boss(word_size=2, n_bins=20, window_size=10, norm_mean=False,
norm_std=False),
TransformerFactory.build_pyts_boss(word_size=2, n_bins=20, window_size=10, norm_mean=False,
norm_std=False),
TransformerFactory.build_pyts_boss(word_size=2, n_bins=20, window_size=10, norm_mean=False,
norm_std=False),
TransformerFactory.build_pyts_boss(word_size=2, n_bins=20, window_size=10, norm_mean=False,
norm_std=False)
]
},
SIGNAL2VEC: {
CLF_MODELS : [
MLPClassifier(hidden_layer_sizes=(2000, 100), learning_rate='adaptive', solver='adam',
activation='logistic'),
MLPClassifier(hidden_layer_sizes=(2000), learning_rate='adaptive', solver='adam', activation='logistic'),
MLPClassifier(hidden_layer_sizes=(1000, 100), learning_rate='adaptive', solver='adam',
activation='logistic'),
MLPClassifier(hidden_layer_sizes=(2000, 100), learning_rate='adaptive', solver='adam',
activation='logistic')
],
TRANSFORMER_MODELS: [
TransformerFactory.build_signal2vec(SAVED_MODEL, PATH_SIGNAL2VEC, num_of_vectors=4),
TransformerFactory.build_signal2vec(SAVED_MODEL, PATH_SIGNAL2VEC, num_of_vectors=4),
TransformerFactory.build_signal2vec(SAVED_MODEL, PATH_SIGNAL2VEC, num_of_vectors=4),
TransformerFactory.build_signal2vec(SAVED_MODEL, PATH_SIGNAL2VEC, num_of_vectors=5)
]
},
WEASEL : {
CLF_MODELS : [
MLPClassifier(hidden_layer_sizes=(2000), learning_rate='adaptive', solver='adam', activation='logistic'),
MLPClassifier(hidden_layer_sizes=(1000,), learning_rate='adaptive', solver='adam', activation='logistic'),
MLPClassifier(hidden_layer_sizes=(100, 50, 100, 50), learning_rate='adaptive', solver='adam'),
MLPClassifier(hidden_layer_sizes=(100,), learning_rate='adaptive', solver='adam', activation='logistic')
],
TRANSFORMER_MODELS: [
TransformerFactory.build_pyts_weasel(word_size=2, n_bins=4, norm_mean=False, norm_std=False),
TransformerFactory.build_pyts_weasel(word_size=2, n_bins=4, norm_mean=False, norm_std=False),
TransformerFactory.build_pyts_weasel(word_size=2, n_bins=4, norm_mean=False, norm_std=False),
TransformerFactory.build_pyts_weasel(word_size=2, n_bins=4, norm_mean=False, norm_std=False)
]
},
PAA : {
CLF_MODELS : [
MLPClassifier(hidden_layer_sizes=(100, 100, 100), learning_rate='adaptive', solver='adam'),
MLPClassifier(hidden_layer_sizes=(2000, 100, 100), learning_rate='adaptive', solver='adam'),
MLPClassifier(hidden_layer_sizes=(100, 50, 100, 50), learning_rate='adaptive', solver='adam'),
MLPClassifier(hidden_layer_sizes=(2000), learning_rate='adaptive', solver='adam', activation='logistic')
],
TRANSFORMER_MODELS: [
TransformerFactory.build_tslearn_paa(n_paa_segments=10, supports_approximation=True),
TransformerFactory.build_tslearn_paa(n_paa_segments=10, supports_approximation=True),
TransformerFactory.build_tslearn_paa(n_paa_segments=10, supports_approximation=True),
TransformerFactory.build_tslearn_paa(n_paa_segments=10, supports_approximation=True)
]
},
DFT : {
CLF_MODELS : [
],
TRANSFORMER_MODELS: [
TransformerFactory.build_pyts_dft(n_coefs=10, norm_mean=False, norm_std=False,
supports_approximation=True),
TransformerFactory.build_pyts_dft(n_coefs=10, norm_mean=False, norm_std=False,
supports_approximation=True),
TransformerFactory.build_pyts_dft(n_coefs=10, norm_mean=False, norm_std=False,
supports_approximation=True),
TransformerFactory.build_pyts_dft(n_coefs=10, norm_mean=False, norm_std=False,
supports_approximation=True)
]
},
SFA : {
CLF_MODELS : [
ExtraTreesClassifier(n_jobs=-1, n_estimators=500),
ExtraTreesClassifier(n_jobs=-1, n_estimators=2000),
RandomForestClassifier(n_jobs=-1, n_estimators=100),
ExtraTreesClassifier(n_jobs=-1, n_estimators=1000)
],
TRANSFORMER_MODELS: [
TransformerFactory.build_pyts_sfa(n_coefs=10, n_bins=5, norm_mean=False, norm_std=False),
TransformerFactory.build_pyts_sfa(n_coefs=10, n_bins=5, norm_mean=False, norm_std=False),
TransformerFactory.build_pyts_sfa(n_coefs=10, n_bins=5, norm_mean=False, norm_std=False),
TransformerFactory.build_pyts_sfa(n_coefs=10, n_bins=5, norm_mean=False, norm_std=False)
]
},
SAX1D : {
CLF_MODELS : [
ExtraTreesClassifier(n_jobs=-1, n_estimators=1000),
ExtraTreesClassifier(n_jobs=-1, n_estimators=2000),
ExtraTreesClassifier(n_jobs=-1, n_estimators=2000),
RandomForestClassifier(n_jobs=-1, n_estimators=100)
],
TRANSFORMER_MODELS: [
TransformerFactory.build_tslearn_one_d_sax(n_paa_segments=50, n_sax_symbols=10),
TransformerFactory.build_tslearn_one_d_sax(n_paa_segments=50, n_sax_symbols=10),
TransformerFactory.build_tslearn_one_d_sax(n_paa_segments=50, n_sax_symbols=20),
TransformerFactory.build_tslearn_one_d_sax(n_paa_segments=50, n_sax_symbols=20)
]
},
SAX : {
CLF_MODELS : [
MLPClassifier(hidden_layer_sizes=(2000), learning_rate='adaptive', solver='adam'),
MLPClassifier(hidden_layer_sizes=(1000, 100), learning_rate='adaptive', solver='adam'),
MLPClassifier(hidden_layer_sizes=(1000, 100), learning_rate='adaptive', solver='adam'),
MLPClassifier(hidden_layer_sizes=(2000, 100), learning_rate='adaptive', solver='adam')
],
TRANSFORMER_MODELS: [
TransformerFactory.build_tslearn_sax(n_paa_segments=50, n_sax_symbols=50, supports_approximation=True),
TransformerFactory.build_tslearn_sax(n_paa_segments=50, n_sax_symbols=10, supports_approximation=True),
TransformerFactory.build_tslearn_sax(n_paa_segments=50, n_sax_symbols=50, supports_approximation=True),
TransformerFactory.build_tslearn_sax(n_paa_segments=50, n_sax_symbols=50, supports_approximation=True)
]
}
}
selected_models_24h = {
BOSS : {
CLF_MODELS : [
MLPClassifier(hidden_layer_sizes=(2000), learning_rate='adaptive', solver='adam', activation='logistic'),
MLPClassifier(hidden_layer_sizes=(2000, 100), learning_rate='adaptive', solver='adam',
activation='logistic'),
MLPClassifier(hidden_layer_sizes=(2000), learning_rate='adaptive', solver='adam'),
MLPClassifier(hidden_layer_sizes=(2000), learning_rate='adaptive', solver='adam')
],
TRANSFORMER_MODELS: [
TransformerFactory.build_pyts_boss(word_size=4, n_bins=5, window_size=10, norm_mean=False, norm_std=False),
TransformerFactory.build_pyts_boss(word_size=4, n_bins=5, window_size=10, norm_mean=False, norm_std=False),
TransformerFactory.build_pyts_boss(word_size=4, n_bins=10, window_size=10, norm_mean=False,
norm_std=False),
TransformerFactory.build_pyts_boss(word_size=4, n_bins=5, window_size=10, norm_mean=False, norm_std=False)
]
},
SIGNAL2VEC: {
CLF_MODELS : [
MLPClassifier(hidden_layer_sizes=(1000, 100), learning_rate='adaptive', solver='adam'),
MLPClassifier(hidden_layer_sizes=(2000), learning_rate='adaptive', solver='adam'),
MLPClassifier(hidden_layer_sizes=(1000, 100), learning_rate='adaptive', solver='adam'),
MLPClassifier(hidden_layer_sizes=(2000, 100, 100), learning_rate='adaptive', solver='adam')
],
TRANSFORMER_MODELS: [
TransformerFactory.build_signal2vec(SAVED_MODEL, PATH_SIGNAL2VEC, num_of_vectors=4),
TransformerFactory.build_signal2vec(SAVED_MODEL, PATH_SIGNAL2VEC, num_of_vectors=4),
TransformerFactory.build_signal2vec(SAVED_MODEL, PATH_SIGNAL2VEC, num_of_vectors=5),
TransformerFactory.build_signal2vec(SAVED_MODEL, PATH_SIGNAL2VEC, num_of_vectors=2)
]
},
WEASEL : {
CLF_MODELS : [
],
TRANSFORMER_MODELS: [
]
},
PAA : {
CLF_MODELS : [
MLPClassifier(hidden_layer_sizes=(1000, 100), learning_rate='adaptive', solver='adam',
activation='logistic'),
MLPClassifier(hidden_layer_sizes=(2000), learning_rate='adaptive', solver='adam', activation='logistic'),
MLPClassifier(hidden_layer_sizes=(1000,), learning_rate='adaptive', solver='adam', activation='logistic'),
MLPClassifier(hidden_layer_sizes=(2000, 100), learning_rate='adaptive', solver='adam',
activation='logistic')
],
TRANSFORMER_MODELS: [
TransformerFactory.build_tslearn_paa(n_paa_segments=10, supports_approximation=True),
TransformerFactory.build_tslearn_paa(n_paa_segments=10, supports_approximation=True),
TransformerFactory.build_tslearn_paa(n_paa_segments=10, supports_approximation=True),
TransformerFactory.build_tslearn_paa(n_paa_segments=10, supports_approximation=True)
]
},
DFT : {
CLF_MODELS : [
ExtraTreesClassifier(n_jobs=-1, n_estimators=100),
ExtraTreesClassifier(n_jobs=-1, n_estimators=2000),
ExtraTreesClassifier(n_jobs=-1, n_estimators=500),
ExtraTreesClassifier(n_jobs=-1, n_estimators=200)
],
TRANSFORMER_MODELS: [
TransformerFactory.build_pyts_dft(n_coefs=10, norm_mean=False, norm_std=False,
supports_approximation=True),
TransformerFactory.build_pyts_dft(n_coefs=10, norm_mean=False, norm_std=False,
supports_approximation=True),
TransformerFactory.build_pyts_dft(n_coefs=10, norm_mean=False, norm_std=False,
supports_approximation=True),
TransformerFactory.build_pyts_dft(n_coefs=10, norm_mean=False, norm_std=False,
supports_approximation=True)
]
},
SFA : {
CLF_MODELS : [
MLPClassifier(hidden_layer_sizes=(100,), learning_rate='adaptive', solver='adam'),
ExtraTreesClassifier(n_jobs=-1, n_estimators=1000),
RandomForestClassifier(n_jobs=-1, n_estimators=200),
ExtraTreesClassifier(n_jobs=-1, n_estimators=100)
],
TRANSFORMER_MODELS: [
TransformerFactory.build_pyts_sfa(n_coefs=10, n_bins=5, norm_mean=False, norm_std=False),
TransformerFactory.build_pyts_sfa(n_coefs=10, n_bins=5, norm_mean=False, norm_std=False),
TransformerFactory.build_pyts_sfa(n_coefs=10, n_bins=5, norm_mean=False, norm_std=False),
TransformerFactory.build_pyts_sfa(n_coefs=10, n_bins=5, norm_mean=False, norm_std=False)
]
},
SAX1D : {
CLF_MODELS : [
MLPClassifier(hidden_layer_sizes=(1000,), learning_rate='adaptive', solver='adam', activation='logistic'),
MLPClassifier(hidden_layer_sizes=(2000), learning_rate='adaptive', solver='adam', activation='logistic'),
MLPClassifier(hidden_layer_sizes=(2000), learning_rate='adaptive', solver='adam', activation='logistic'),
MLPClassifier(hidden_layer_sizes=(1000,), learning_rate='adaptive', solver='adam', activation='logistic')
],
TRANSFORMER_MODELS: [
TransformerFactory.build_tslearn_one_d_sax(n_paa_segments=50, n_sax_symbols=10),
TransformerFactory.build_tslearn_one_d_sax(n_paa_segments=50, n_sax_symbols=20),
TransformerFactory.build_tslearn_one_d_sax(n_paa_segments=50, n_sax_symbols=50),
TransformerFactory.build_tslearn_one_d_sax(n_paa_segments=50, n_sax_symbols=100)
]
},
SAX : {
CLF_MODELS : [
MLPClassifier(hidden_layer_sizes=(100, 100, 100), learning_rate='adaptive', solver='adam'),
MLPClassifier(hidden_layer_sizes=(2000, 100), learning_rate='adaptive', solver='adam'),
MLPClassifier(hidden_layer_sizes=(100, 100), learning_rate='adaptive', solver='adam'),
MLPClassifier(hidden_layer_sizes=(2000), learning_rate='adaptive', solver='adam')
],
TRANSFORMER_MODELS: [
TransformerFactory.build_tslearn_sax(n_paa_segments=50, n_sax_symbols=10, supports_approximation=True),
TransformerFactory.build_tslearn_sax(n_paa_segments=20, n_sax_symbols=50, supports_approximation=True),
TransformerFactory.build_tslearn_sax(n_paa_segments=20, n_sax_symbols=10, supports_approximation=True),
TransformerFactory.build_tslearn_sax(n_paa_segments=20, n_sax_symbols=50, supports_approximation=True)
]
}
}
model_selection_clf_list = [
MLPClassifier(hidden_layer_sizes=(1000,), learning_rate='adaptive', solver='adam',
activation='logistic'),
MLPClassifier(hidden_layer_sizes=(1000, 100), learning_rate='adaptive', solver='adam',
activation='logistic'),
MLPClassifier(hidden_layer_sizes=(2000), learning_rate='adaptive', solver='adam',
activation='logistic')
]
model_selection_transformers = [
TransformerFactory.build_pyts_boss(word_size=2, n_bins=5, window_size=10, norm_mean=False, norm_std=False),
TransformerFactory.build_signal2vec(SAVED_MODEL, PATH_SIGNAL2VEC, num_of_vectors=2),
TransformerFactory.build_signal2vec(SAVED_MODEL, PATH_SIGNAL2VEC, num_of_vectors=1),
TransformerFactory.build_signal2vec(SAVED_MODEL, PATH_SIGNAL2VEC, transformer_type=TransformerType.transform)
]
model_selection_mlknn = [MLkNN(k=1, s=1.0, ignore_first_neighbours=0),
MLkNN(k=3, s=1.0, ignore_first_neighbours=0),
MLkNN(k=10, s=1.0, ignore_first_neighbours=0),
MLkNN(k=20, s=1.0, ignore_first_neighbours=0),
MLkNN(k=1, s=0.5, ignore_first_neighbours=0),
MLkNN(k=3, s=0.5, ignore_first_neighbours=0),
MLkNN(k=10, s=0.5, ignore_first_neighbours=0),
MLkNN(k=20, s=0.5, ignore_first_neighbours=0),
MLkNN(k=1, s=0.7, ignore_first_neighbours=0),
MLkNN(k=3, s=0.7, ignore_first_neighbours=0),
MLkNN(k=10, s=0.7, ignore_first_neighbours=0),
MLkNN(k=20, s=0.7, ignore_first_neighbours=0)
]
model_selection_rakel = [
RakelD(MLPClassifier(hidden_layer_sizes=(100, 100, 100), learning_rate='adaptive', solver='adam')),
RakelD(MLPClassifier(hidden_layer_sizes=(100, 100, 100), learning_rate='adaptive', solver='adam'), labelset_size=5),
RakelD(MLPClassifier(hidden_layer_sizes=(100, 100), learning_rate='adaptive', solver='adam')),
RakelD(MLPClassifier(hidden_layer_sizes=(100, 100), learning_rate='adaptive', solver='adam'), labelset_size=5),
RakelD(MLPClassifier(hidden_layer_sizes=(2000, 100), learning_rate='adaptive', solver='adam')),
RakelD(MLPClassifier(hidden_layer_sizes=(2000, 100), learning_rate='adaptive', solver='adam'), labelset_size=5),
RakelD(MLPClassifier(hidden_layer_sizes=(2000), learning_rate='adaptive', solver='adam')),
RakelD(MLPClassifier(hidden_layer_sizes=(2000), learning_rate='adaptive', solver='adam'), labelset_size=5),
RakelD(base_classifier=GaussianNB(), base_classifier_require_dense=[True, True], labelset_size=3),
RakelD(base_classifier=GaussianNB(), base_classifier_require_dense=[True, True], labelset_size=5),
RakelD(base_classifier=GaussianNB(), base_classifier_require_dense=[True, True], labelset_size=7)
]
model_selection_wavelets = [
TransformerFactory.build_wavelet(),
TransformerFactory.build_wavelet(drop_cA=True)
]
model_selection_delay_embeddings = [
TransformerFactory.build_delay_embedding(delay_in_seconds=30, dimension=6),
TransformerFactory.build_delay_embedding(delay_in_seconds=32, dimension=8),
TransformerFactory.build_delay_embedding(delay_in_seconds=6, dimension=8),
TransformerFactory.build_delay_embedding(delay_in_seconds=12, dimension=8)
]
cv_signal2vec = [TransformerFactory.build_signal2vec(SAVED_MODEL, PATH_SIGNAL2VEC, num_of_vectors=1)]
cv_signal2vec_clf = [MLPClassifier(hidden_layer_sizes=(1000,), learning_rate='adaptive',
solver='adam', activation='logistic')]
cv_boss_clf = [MLPClassifier(hidden_layer_sizes=(2000, 100, 100), learning_rate='adaptive', solver='adam')]
cv_boss = [TransformerFactory.build_pyts_boss(word_size=2, n_bins=2, window_size=10,
norm_mean=False, norm_std=False)]
state_of_the_art = {
SIGNAL2VEC : {
CLF_MODELS : [MLPClassifier(hidden_layer_sizes=(1000,), learning_rate='adaptive',
solver='adam', activation='logistic')],
TRANSFORMER_MODELS: [TransformerFactory.build_signal2vec(SAVED_MODEL, PATH_SIGNAL2VEC, num_of_vectors=1)]
},
WAVELETS : {
CLF_MODELS : [MLkNN(ignore_first_neighbours=0, k=3, s=1.0),
RakelD(MLPClassifier(hidden_layer_sizes=(100, 100, 100), learning_rate='adaptive',
solver='adam'), labelset_size=5)],
TRANSFORMER_MODELS: [TransformerFactory.build_wavelet(), TransformerFactory.build_wavelet()]
},
TIME_DELAY_EMBEDDING: {
CLF_MODELS : [
MLkNN(ignore_first_neighbours=0, k=3, s=1.0),
RakelD(MLPClassifier(hidden_layer_sizes=(100, 100, 100), learning_rate='adaptive',
solver='adam'), labelset_size=5)
],
TRANSFORMER_MODELS: [TransformerFactory.build_delay_embedding(delay_in_seconds=30, dimension=6),
TransformerFactory.build_delay_embedding(delay_in_seconds=30, dimension=6)
]
},
BOSS : {
CLF_MODELS : [
MLPClassifier(hidden_layer_sizes=(2000, 100, 100), learning_rate='adaptive', solver='adam')],
TRANSFORMER_MODELS: [TransformerFactory.build_pyts_boss(word_size=2, n_bins=4, window_size=10,
norm_mean=False, norm_std=False)]
}
}