-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathdataset.py
134 lines (123 loc) · 6.94 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
from typing import Callable, Tuple, List
import torch
import torch.nn.functional as F
from torch.utils.data import Dataset
import os
import numpy as np
import misc
import augmentation
class CellInstanceSegmentation(Dataset):
"""
This dataset implements the cell instance segmentation dataset for the DETR model.
Dataset source: https://github.com/ChristophReich1996/BCS_Data/tree/master/Cell_Instance_Segmentation_Regular_Traps
"""
def __init__(self, path: str = "../../BCS_Data/Cell_Instance_Segmentation_Regular_Traps/train",
normalize: bool = True,
normalization_function: Callable[[torch.Tensor], torch.Tensor] = misc.normalize,
augmentation: Tuple[augmentation.Augmentation, ...] = (
augmentation.VerticalFlip(), augmentation.NoiseInjection(), augmentation.ElasticDeformation()),
augmentation_p: float = 0.5, return_absolute_bounding_box: bool = False,
downscale: bool = True, downscale_shape: Tuple[int, int] = (128, 128),
two_classes: bool = True) -> None:
"""
Constructor method
:param path: (str) Path to dataset
:param normalize: (bool) If true normalization_function is applied
:param normalization_function: (Callable[[torch.Tensor], torch.Tensor]) Normalization function
:param augmentation: (Tuple[Callable[[torch.Tensor, torch.Tensor, torch.Tensor], torch.Tensor]]) Tuple of
augmentation functions to be applied
:param augmentation_p: (float) Probability that an augmentation is utilized
:param downscale: (bool) If true images and segmentation maps will be downscaled to a size of 256 X 256
:param downscale_shape: (Tuple[int, int]) Target shape is downscale is utilized
:param return_absolute_bounding_box: (Bool) If true the absolute bb is returned else the relative bb is returned
:param two_classes: (bool) If true only two classes, trap and cell, will be utilized
"""
# Save parameters
self.normalize = normalize
self.normalization_function = normalization_function
self.augmentation = augmentation
self.augmentation_p = augmentation_p
self.return_absolute_bounding_box = return_absolute_bounding_box
self.downscale = downscale
self.downscale_shape = downscale_shape
self.two_class = two_classes
# Get paths of input images
self.inputs = []
for file in sorted(os.listdir(os.path.join(path, "inputs"))):
self.inputs.append(os.path.join(path, "inputs", file))
# Get paths of instances
self.instances = []
for file in sorted(os.listdir(os.path.join(path, "instances"))):
self.instances.append(os.path.join(path, "instances", file))
# Get paths of class labels
self.class_labels = []
for file in sorted(os.listdir(os.path.join(path, "classes"))):
self.class_labels.append(os.path.join(path, "classes", file))
# Get paths of bounding boxes
self.bounding_boxes = []
for file in sorted(os.listdir(os.path.join(path, "bounding_boxes"))):
self.bounding_boxes.append(os.path.join(path, "bounding_boxes", file))
def __len__(self) -> int:
"""
Method returns the length of the dataset
:return: (int) Length of the dataset
"""
return len(self.inputs)
def __getitem__(self, item: int) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
"""
Get item method
:param item: (int) Item to be returned of the dataset
:return: (Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]) Tuple including input image,
bounding box, class label and instances.
"""
# Load data
input = torch.load(self.inputs[item]).unsqueeze(dim=0)
instances = torch.load(self.instances[item])
bounding_boxes = torch.load(self.bounding_boxes[item])
class_labels = torch.load(self.class_labels[item])
# Encode class labels as one-hot
if self.two_class:
class_labels = misc.to_one_hot(class_labels.clamp(max=2.0), num_classes=2 + 1)
else:
class_labels = misc.to_one_hot(class_labels, num_classes=3 + 1)
# Normalize input if utilized
if self.normalize:
input = self.normalization_function(input)
# Apply augmentation if needed
if np.random.random() < self.augmentation_p and self.augmentation is not None:
# Get augmentation
augmentation_to_be_applied = np.random.choice(self.augmentation)
# Apply augmentation
if augmentation_to_be_applied.need_labels():
input, instances, bounding_boxes = augmentation_to_be_applied(input, instances, bounding_boxes)
else:
input = augmentation_to_be_applied(input)
# Downscale data to 256 x 256 if utilized
if self.downscale:
# Apply height and width
bounding_boxes[..., [0, 2]] = bounding_boxes[..., [0, 2]] * (self.downscale_shape[0] / input.shape[-1])
bounding_boxes[..., [1, 3]] = bounding_boxes[..., [1, 3]] * (self.downscale_shape[1] / input.shape[-2])
input = F.interpolate(input=input.unsqueeze(dim=0),
size=self.downscale_shape, mode="bicubic", align_corners=False)[0]
instances = (F.interpolate(input=instances.unsqueeze(dim=0),
size=self.downscale_shape, mode="bilinear", align_corners=False)[
0] > 0.75).float()
# Convert absolute bounding box to relative bounding box of utilized
if not self.return_absolute_bounding_box:
bounding_boxes = misc.absolute_bounding_box_to_relative(bounding_boxes=bounding_boxes,
height=input.shape[1], width=input.shape[2])
return input, instances, misc.bounding_box_x0y0x1y1_to_xcycwh(bounding_boxes), class_labels
def collate_function_cell_instance_segmentation(
batch: List[Tuple[torch.Tensor]]) -> \
Tuple[torch.Tensor, List[torch.Tensor], List[torch.Tensor], List[torch.Tensor]]:
"""
Collate function of instance segmentation dataset.
:param batch: (Tuple[Iterable[torch.Tensor], Iterable[torch.Tensor], Iterable[torch.Tensor], Iterable[torch.Tensor]])
Batch of input data, instances maps, bounding boxes and class labels
:return: (Tuple[torch.Tensor, Iterable[torch.Tensor], Iterable[torch.Tensor], Iterable[torch.Tensor]]) Batched input
data, instances, bounding boxes and class labels are stored in a list due to the different instances.
"""
return torch.stack([input_samples[0] for input_samples in batch], dim=0), \
[input_samples[1] for input_samples in batch], \
[input_samples[2] for input_samples in batch], \
[input_samples[3] for input_samples in batch]