-
Notifications
You must be signed in to change notification settings - Fork 34
/
main.py
811 lines (690 loc) · 33.3 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
import argparse
import glob
import json
import os
import random
import sys
import time
import backoff
import openai
# FAST_DOWNWARD_ALIAS = "lama"
FAST_DOWNWARD_ALIAS = "seq-opt-fdss-1"
def postprocess(x):
return x.strip()
def get_cost(x):
splitted = x.split()
counter = 0
found = False
cost = 1e5
for i, xx in enumerate(splitted):
if xx == "cost":
counter = i
found = True
break
if found:
cost = float(splitted[counter+2])
return cost
###############################################################################
#
# Define different problem domains
#
###############################################################################
DOMAINS = [
"barman",
"blocksworld",
"floortile",
"grippers",
"storage",
"termes",
"tyreworld",
"manipulation"
]
class Domain:
def __init__(self):
# every domain should contain the context as in "in-context learning" (ICL)
# which are the example problem in natural language.
# For instance, in our case, context is:
# 1. p_example.nl (a language description of the problem)
# 2. p_example.pddl (the ground-truth problem pddl for the problem)
# 3. p_example.sol (the ground-truth solution in natural language to the problem)
self.context = ("p_example.nl", "p_example.pddl", "p_example.sol")
self.tasks = [] # should be list of tuples like (descritpion, ground_truth_pddl)
self.grab_tasks()
def grab_tasks(self):
path = f"./domains/{self.name}"
nls = []
for fn in glob.glob(f"{path}/*.nl"):
fn_ = fn.split("/")[-1]
if "domain" not in fn_ and "p_example" not in fn_:
if os.path.exists(fn.replace("nl", "pddl")):
nls.append(fn_)
sorted_nls = sorted(nls)
self.tasks = [(nl, nl.replace("nl", "pddl")) for nl in sorted_nls]
def __len__(self):
return len(self.tasks)
def get_task_suffix(self, i):
nl, pddl = self.tasks[i]
return f"{self.name}/{pddl}"
def get_task_file(self, i):
nl, pddl = self.tasks[i]
return f"./domains/{self.name}/{nl}", f"./domains/{self.name}/{pddl}"
def get_task(self, i):
nl_f, pddl_f = self.get_task_file(i)
with open(nl_f, 'r') as f:
nl = f.read()
with open(pddl_f, 'r') as f:
pddl = f.read()
return postprocess(nl), postprocess(pddl)
def get_context(self):
nl_f = f"./domains/{self.name}/{self.context[0]}"
pddl_f = f"./domains/{self.name}/{self.context[1]}"
sol_f = f"./domains/{self.name}/{self.context[2]}"
with open(nl_f, 'r') as f:
nl = f.read()
with open(pddl_f, 'r') as f:
pddl = f.read()
with open(sol_f, 'r') as f:
sol = f.read()
return postprocess(nl), postprocess(pddl), postprocess(sol)
def get_domain_pddl(self):
domain_pddl_f = self.get_domain_pddl_file()
with open(domain_pddl_f, 'r') as f:
domain_pddl = f.read()
return postprocess(domain_pddl)
def get_domain_pddl_file(self):
domain_pddl_f = f"./domains/{self.name}/domain.pddl"
return domain_pddl_f
def get_domain_nl(self):
domain_nl_f = self.get_domain_nl_file()
try:
with open(domain_nl_f, 'r') as f:
domain_nl = f.read()
except:
domain_nl = "Nothing"
return postprocess(domain_nl)
def get_domain_nl_file(self):
domain_nl_f = f"./domains/{self.name}/domain.nl"
return domain_nl_f
class Barman(Domain):
name = "barman" # this should match the directory name
class Floortile(Domain):
name = "floortile" # this should match the directory name
class Termes(Domain):
name = "termes" # this should match the directory name
class Tyreworld(Domain):
name = "tyreworld" # this should match the directory name
class Grippers(Domain):
name = "grippers" # this should match the directory name
class Storage(Domain):
name = "storage" # this should match the directory name
class Blocksworld(Domain):
name = "blocksworld" # this should match the directory name
class Manipulation(Domain):
name = "manipulation" # this should match the directory name
###############################################################################
#
# The agent that leverages classical planner to help LLMs to plan
#
###############################################################################
class Planner:
def __init__(self):
self.openai_api_keys = self.load_openai_keys()
self.use_chatgpt = True
def load_openai_keys(self,):
openai_keys_file = os.path.join(os.getcwd(), "keys/openai_keys.txt")
with open(openai_keys_file, "r") as f:
context = f.read()
context_lines = context.strip().split('\n')
print(context_lines)
return context_lines
def create_llm_prompt(self, task_nl, domain_nl):
# Baseline 1 (LLM-as-P): directly ask the LLM for plan
prompt = f"{domain_nl} \n" + \
f"Now consider a planning problem. " + \
f"The problem description is: \n {task_nl} \n" + \
f"Can you provide an optimal plan, in the way of a " + \
f"sequence of behaviors, to solve the problem?"
return prompt
def create_llm_stepbystep_prompt(self, task_nl, domain_nl):
# Baseline 1 (LLM-as-P): directly ask the LLM for plan
prompt = f"{domain_nl} \n" + \
f"Now consider a planning problem. " + \
f"The problem description is: \n {task_nl} \n" + \
f"Can you provide an optimal plan, in the way of a " + \
f"sequence of behaviors, to solve the problem? \n" + \
f"Please think step by step."
return prompt
def create_llm_tot_ic_prompt(self, task_nl, domain_nl, context, plan):
context_nl, context_pddl, context_sol = context
prompt = f"Given the current state, provide the set of feasible actions and their corresponding next states, using the format 'action -> state'. \n" + \
f"Keep the list short. Think carefully about the requirements of the actions you select and make sure they are met in the current state. \n" + \
f"Start with actions that are most likely to make progress towards the goal. \n" + \
f"Only output one action per line. Do not return anything else. " + \
f"Here are the rules. \n {domain_nl} \n\n" + \
f"An example planning problem is: \n {context_nl} \n" + \
f"A plan for the example problem is: \n {context_sol} \n" + \
f"Now I have a new planning problem and its description is: \n {task_nl} \n" + \
f"You have taken the following actions: \n {plan} \n"
# print(prompt)
return prompt
def create_llm_tot_ic_value_prompt(self, task_nl, domain_nl, context, plan):
context_nl, context_pddl, context_sol = context
context_sure_1 = context_sol.split('\n')[0]
context_sure_2 = context_sol.split('\n')[0] + context_sol.split('\n')[1]
context_impossible_1 = '\n'.join(context_sol.split('\n')[1:])
context_impossible_2 = context_sol.split('\n')[-1]
'''
prompt = f"Evaluate if a given plan reaches the goal or is an optimal partial plan towards the goal (reached/sure/maybe/impossible). \n" + \
f"Only answer 'reached' if the goal conditions are reached by the exact plan in the prompt. \n" + \
f"Only answer 'sure' if you are sure that preconditions are satisfied for all actions in the plan, and the plan makes fast progress towards the goal. \n" + \
f"Answer 'impossible' if one of the actions has unmet preconditions. \n" + \
f"Here are the rules. \n {domain_nl} \n\n" + \
f"Here are some example evaluations for the planning problem: \n {context_nl} \n\n " + \
f"Plan: {context_sure_1} \n" + \
f"Answer: Sure. \n\n" + \
f"Plan: {context_sure_2} \n" + \
f"Answer: Sure. \n\n" + \
f"Plan: {context_sol} \n" + \
f"Answer: Reached. \n\n" + \
f"Plan: {context_impossible_1} \n" + \
f"Answer: Impossible. \n\n" + \
f"Plan: {context_impossible_2} \n" + \
f"Answer: Impossible. \n\n" + \
f"Now I have a new planning problem and its description is: \n {task_nl} \n" + \
f"Evaluate the following partial plan as reached/sure/maybe/impossible. DO NOT RETURN ANYTHING ELSE. DO NOT TRY TO COMPLETE THE PLAN. \n" + \
f"Plan: {plan} \n"
'''
prompt = f"Determine if a given plan reaches the goal or give your confidence score that it is an optimal partial plan towards the goal (reached/impossible/0-1). \n" + \
f"Only answer 'reached' if the goal conditions are reached by the exact plan in the prompt. \n" + \
f"Answer 'impossible' if one of the actions has unmet preconditions. \n" + \
f"Otherwise,give a number between 0 and 1 as your evaluation of the partial plan's progress towards the goal. \n" + \
f"Here are the rules. \n {domain_nl} \n\n" + \
f"Here are some example evaluations for the planning problem: \n {context_nl} \n\n " + \
f"Plan: {context_sure_1} \n" + \
f"Answer: 0.8. \n\n" + \
f"Plan: {context_sure_2} \n" + \
f"Answer: 0.9. \n\n" + \
f"Plan: {context_sol} \n" + \
f"Answer: Reached. \n\n" + \
f"Plan: {context_impossible_1} \n" + \
f"Answer: Impossible. \n\n" + \
f"Plan: {context_impossible_2} \n" + \
f"Answer: Impossible. \n\n" + \
f"Now I have a new planning problem and its description is: \n {task_nl} \n" + \
f"Evaluate the following partial plan as reached/impossible/0-1. DO NOT RETURN ANYTHING ELSE. DO NOT TRY TO COMPLETE THE PLAN. \n" + \
f"Plan: {plan} \n"
return prompt
def tot_bfs(self, task_nl, domain_nl, context, time_left=200, max_depth=2):
from queue import PriorityQueue
start_time = time.time()
plan_queue = PriorityQueue()
plan_queue.put((0, ""))
while time.time() - start_time < time_left and not plan_queue.empty():
priority, plan = plan_queue.get()
# print (priority, plan)
steps = plan.split('\n')
if len(steps) > max_depth:
return ""
candidates_prompt = self.create_llm_tot_ic_prompt(task_nl, domain_nl, context, plan)
candidates = self.query(candidates_prompt).strip()
print (candidates)
lines = candidates.split('\n')
for line in lines:
if time.time() - start_time > time_left:
break
if len(line) > 0 and '->' in line:
new_plan = plan + "\n" + line
value_prompt = self.create_llm_tot_ic_value_prompt(task_nl, domain_nl, context, new_plan)
answer = self.query(value_prompt).strip().lower()
print(new_plan)
print("Response \n" + answer)
if "reached" in answer:
return new_plan
if "impossible" in answer:
continue
if "answer: " in answer:
answer = answer.split("answer: ")[1]
try:
score = float(answer)
except ValueError:
continue
if score > 0:
new_priority = priority + 1 / score
plan_queue.put((new_priority, new_plan))
return ""
def create_llm_ic_prompt(self, task_nl, domain_nl, context):
# Baseline 2 (LLM-as-P with context): directly ask the LLM for plan
context_nl, context_pddl, context_sol = context
prompt = f"{domain_nl} \n" + \
f"An example planning problem is: \n {context_nl} \n" + \
f"A plan for the example problem is: \n {context_sol} \n" + \
f"Now I have a new planning problem and its description is: \n {task_nl} \n" + \
f"Can you provide an optimal plan, in the way of a " + \
f"sequence of behaviors, to solve the problem?"
return prompt
def create_llm_pddl_prompt(self, task_nl, domain_nl):
# Baseline 3 (LM+P w/o context), no context, create the problem PDDL
prompt = f"{domain_nl} \n" + \
f"Now consider a planning problem. " + \
f"The problem description is: \n {task_nl} \n" + \
f"Provide me with the problem PDDL file that describes " + \
f"the planning problem directly without further explanations?" +\
f"Keep the domain name consistent in the problem PDDL. Only return the PDDL file. Do not return anything else."
return prompt
def create_llm_ic_pddl_prompt(self, task_nl, domain_pddl, context):
# our method (LM+P), create the problem PDDL given the context
context_nl, context_pddl, context_sol = context
prompt = f"I want you to solve planning problems. " + \
f"An example planning problem is: \n {context_nl} \n" + \
f"The problem PDDL file to this problem is: \n {context_pddl} \n" + \
f"Now I have a new planning problem and its description is: \n {task_nl} \n" + \
f"Provide me with the problem PDDL file that describes " + \
f"the new planning problem directly without further explanations? Only return the PDDL file. Do not return anything else."
return prompt
def query(self, prompt_text):
server_flag = 0
server_cnt = 0
result_text = ""
while server_cnt < 10:
try:
self.update_key()
if self.use_chatgpt: # currently, we will always use chatgpt
@backoff.on_exception(backoff.expo, openai.error.RateLimitError)
def completions_with_backoff(**kwargs):
return openai.ChatCompletion.create(**kwargs)
# response = openai.ChatCompletion.create(
response = completions_with_backoff(
model="gpt-4",
temperature=0.0,
top_p=1,
frequency_penalty=0,
presence_penalty=0,
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": prompt_text},
],
)
result_text = response['choices'][0]['message']['content']
else:
response = openai.Completion.create(
model="text-davinci-003",
prompt=prompt_text,
temperature=0.0,
max_tokens=1024,
top_p=1,
frequency_penalty=0,
presence_penalty=0
)
result_text = response['choices'][0]['text']
server_flag = 1
if server_flag:
break
except Exception as e:
server_cnt += 1
print(e)
return result_text
def update_key(self):
curr_key = self.openai_api_keys[0]
openai.api_key = curr_key
self.openai_api_keys.remove(curr_key)
self.openai_api_keys.append(curr_key)
def parse_result(self, pddl_string):
# remove extra texts
#try:
# beg = pddl_string.find("```") + 3
# pddl_string = pddl_string[beg: beg + pddl_string[beg:].find("```")]
#except:
# raise Exception("[error] cannot find ```pddl-file``` in the pddl string")
# remove comments, they can cause error
#t0 = time.time()
#while pddl_string.find(";") >= 0:
# start = pddl_string.find(";")
# i = 0
# while pddl_string[start+i] != ")" and pddl_string[start+i] != "\n":
# i += 1
# pddl_string = pddl_string[:start] + pddl_string[start+i:]
#pddl_string = pddl_string.strip() + "\n"
#t1 = time.time()
#print(f"[info] remove comments takes {t1-t0} sec")
return pddl_string
def plan_to_language(self, plan, task_nl, domain_nl, domain_pddl):
domain_pddl_ = " ".join(domain_pddl.split())
task_nl_ = " ".join(task_nl.split())
prompt = f"A planning problem is described as: \n {task_nl} \n" + \
f"The corresponding domain PDDL file is: \n {domain_pddl_} \n" + \
f"The optimal PDDL plan is: \n {plan} \n" + \
f"Transform the PDDL plan into a sequence of behaviors without further explanation."
res = self.query(prompt).strip() + "\n"
return res
def llm_ic_pddl_planner(args, planner, domain):
"""
Our method:
context: (task natural language, task problem PDDL)
Condition on the context (task description -> task problem PDDL),
LLM will be asked to provide the problem PDDL of a new task description.
Then, we use a planner to find the near optimal solution, and translate
that back to natural language.
"""
context = domain.get_context()
domain_pddl = domain.get_domain_pddl()
domain_pddl_file = domain.get_domain_pddl_file()
domain_nl = domain.get_domain_nl()
domain_nl_file = domain.get_domain_nl_file()
# create the tmp / result folders
problem_folder = f"./experiments/run{args.run}/problems/llm_ic_pddl/{domain.name}"
plan_folder = f"./experiments/run{args.run}/plans/llm_ic_pddl/{domain.name}"
result_folder = f"./experiments/run{args.run}/results/llm_ic_pddl/{domain.name}"
if not os.path.exists(problem_folder):
os.system(f"mkdir -p {problem_folder}")
if not os.path.exists(plan_folder):
os.system(f"mkdir -p {plan_folder}")
if not os.path.exists(result_folder):
os.system(f"mkdir -p {result_folder}")
task = args.task
start_time = time.time()
# A. generate problem pddl file
task_suffix = domain.get_task_suffix(task)
task_nl, task_pddl = domain.get_task(task)
prompt = planner.create_llm_ic_pddl_prompt(task_nl, domain_pddl, context)
raw_result = planner.query(prompt)
task_pddl_ = planner.parse_result(raw_result)
# B. write the problem file into the problem folder
task_pddl_file_name = f"./experiments/run{args.run}/problems/llm_ic_pddl/{task_suffix}"
with open(task_pddl_file_name, "w") as f:
f.write(task_pddl_)
time.sleep(1)
## C. run fastforward to plan
plan_file_name = f"./experiments/run{args.run}/plans/llm_ic_pddl/{task_suffix}"
sas_file_name = f"./experiments/run{args.run}/plans/llm_ic_pddl/{task_suffix}.sas"
os.system(f"python ./downward/fast-downward.py --alias {FAST_DOWNWARD_ALIAS} " + \
f"--search-time-limit {args.time_limit} --plan-file {plan_file_name} " + \
f"--sas-file {sas_file_name} " + \
f"{domain_pddl_file} {task_pddl_file_name}")
# D. collect the least cost plan
best_cost = 1e10
best_plan = None
for fn in glob.glob(f"{plan_file_name}.*"):
with open(fn, "r") as f:
plans = f.readlines()
cost = get_cost(plans[-1])
if cost < best_cost:
best_cost = cost
best_plan = "\n".join([p.strip() for p in plans[:-1]])
# E. translate the plan back to natural language, and write it to result
# commented out due to exceeding token limit of gpt-4
'''
if best_plan:
plans_nl = planner.plan_to_language(best_plan, task_nl, domain_nl, domain_pddl)
plan_nl_file_name = f"./experiments/run{args.run}/results/llm_ic_pddl/{task_suffix}"
with open(plan_nl_file_name, "w") as f:
f.write(plans_nl)
'''
end_time = time.time()
if best_plan:
print(f"[info] task {task} takes {end_time - start_time} sec, found a plan with cost {best_cost}")
else:
print(f"[info] task {task} takes {end_time - start_time} sec, no solution found")
def llm_pddl_planner(args, planner, domain):
"""
Baseline method:
Same as ours, except that no context is given. In other words, the LLM
will be asked to directly give a problem PDDL file without any context.
"""
context = domain.get_context()
domain_pddl = domain.get_domain_pddl()
domain_pddl_file = domain.get_domain_pddl_file()
domain_nl = domain.get_domain_nl()
domain_nl_file = domain.get_domain_nl_file()
# create the tmp / result folders
problem_folder = f"./experiments/run{args.run}/problems/llm_pddl/{domain.name}"
plan_folder = f"./experiments/run{args.run}/plans/llm_pddl/{domain.name}"
result_folder = f"./experiments/run{args.run}/results/llm_pddl/{domain.name}"
if not os.path.exists(problem_folder):
os.system(f"mkdir -p {problem_folder}")
if not os.path.exists(plan_folder):
os.system(f"mkdir -p {plan_folder}")
if not os.path.exists(result_folder):
os.system(f"mkdir -p {result_folder}")
task = args.task
start_time = time.time()
# A. generate problem pddl file
task_suffix = domain.get_task_suffix(task)
task_nl, task_pddl = domain.get_task(task)
prompt = planner.create_llm_pddl_prompt(task_nl, domain_nl)
raw_result = planner.query(prompt)
task_pddl_ = planner.parse_result(raw_result)
# B. write the problem file into the problem folder
task_pddl_file_name = f"./experiments/run{args.run}/problems/llm_pddl/{task_suffix}"
with open(task_pddl_file_name, "w") as f:
f.write(task_pddl_)
time.sleep(1)
# C. run fastforward to plan
plan_file_name = f"./experiments/run{args.run}/plans/llm_pddl/{task_suffix}"
sas_file_name = f"./experiments/run{args.run}/plans/llm_pddl/{task_suffix}.sas"
os.system(f"python ./downward/fast-downward.py --alias {FAST_DOWNWARD_ALIAS} " + \
f"--search-time-limit {args.time_limit} --plan-file {plan_file_name} " + \
f"--sas-file {sas_file_name} " + \
f"{domain_pddl_file} {task_pddl_file_name}")
# D. collect the least cost plan
best_cost = 1e10
best_plan = None
for fn in glob.glob(f"{plan_file_name}.*"):
with open(fn, "r") as f:
try:
plans = f.readlines()
cost = get_cost(plans[-1])
if cost < best_cost:
best_cost = cost
best_plan = "\n".join([p.strip() for p in plans[:-1]])
except:
continue
# E. translate the plan back to natural language, and write it to result
# commented out due to exceeding token limit of gpt-4
'''
if best_plan:
plans_nl = planner.plan_to_language(best_plan, task_nl, domain_nl, domain_pddl)
plan_nl_file_name = f"./experiments/run{args.run}/results/llm_pddl/{task_suffix}"
with open(plan_nl_file_name, "w") as f:
f.write(plans_nl)
'''
end_time = time.time()
if best_plan:
print(f"[info] task {task} takes {end_time - start_time} sec, found a plan with cost {best_cost}")
else:
print(f"[info] task {task} takes {end_time - start_time} sec, no solution found")
def llm_planner(args, planner, domain):
"""
Baseline method:
The LLM will be asked to directly give a plan based on the task description.
"""
context = domain.get_context()
domain_pddl = domain.get_domain_pddl()
domain_pddl_file = domain.get_domain_pddl_file()
domain_nl = domain.get_domain_nl()
domain_nl_file = domain.get_domain_nl_file()
# create the tmp / result folders
problem_folder = f"./experiments/run{args.run}/problems/llm/{domain.name}"
plan_folder = f"./experiments/run{args.run}/plans/llm/{domain.name}"
result_folder = f"./experiments/run{args.run}/results/llm/{domain.name}"
if not os.path.exists(problem_folder):
os.system(f"mkdir -p {problem_folder}")
if not os.path.exists(plan_folder):
os.system(f"mkdir -p {plan_folder}")
if not os.path.exists(result_folder):
os.system(f"mkdir -p {result_folder}")
task = args.task
start_time = time.time()
# A. generate problem pddl file
task_suffix = domain.get_task_suffix(task)
task_nl, task_pddl = domain.get_task(task)
prompt = planner.create_llm_prompt(task_nl, domain_nl)
text_plan = planner.query(prompt)
# B. write the problem file into the problem folder
text_plan_file_name = f"./experiments/run{args.run}/results/llm/{task_suffix}"
with open(text_plan_file_name, "w") as f:
f.write(text_plan)
end_time = time.time()
print(f"[info] task {task} takes {end_time - start_time} sec")
def llm_stepbystep_planner(args, planner, domain):
"""
Baseline method:
The LLM will be asked to directly give a plan based on the task description.
"""
context = domain.get_context()
domain_pddl = domain.get_domain_pddl()
domain_pddl_file = domain.get_domain_pddl_file()
domain_nl = domain.get_domain_nl()
domain_nl_file = domain.get_domain_nl_file()
# create the tmp / result folders
problem_folder = f"./experiments/run{args.run}/problems/llm_step/{domain.name}"
plan_folder = f"./experiments/run{args.run}/plans/llm_step/{domain.name}"
result_folder = f"./experiments/run{args.run}/results/llm_step/{domain.name}"
if not os.path.exists(problem_folder):
os.system(f"mkdir -p {problem_folder}")
if not os.path.exists(plan_folder):
os.system(f"mkdir -p {plan_folder}")
if not os.path.exists(result_folder):
os.system(f"mkdir -p {result_folder}")
task = args.task
start_time = time.time()
# A. generate problem pddl file
task_suffix = domain.get_task_suffix(task)
task_nl, task_pddl = domain.get_task(task)
prompt = planner.create_llm_stepbystep_prompt(task_nl, domain_nl)
text_plan = planner.query(prompt)
# B. write the problem file into the problem folder
text_plan_file_name = f"./experiments/run{args.run}/results/llm_step/{task_suffix}"
with open(text_plan_file_name, "w") as f:
f.write(text_plan)
end_time = time.time()
print(f"[info] task {task} takes {end_time - start_time} sec")
def llm_tot_ic_planner(args, planner, domain):
"""
Tree of Thoughts planner
"""
context = domain.get_context()
domain_pddl = domain.get_domain_pddl()
domain_pddl_file = domain.get_domain_pddl_file()
domain_nl = domain.get_domain_nl()
domain_nl_file = domain.get_domain_nl_file()
# create the tmp / result folders
problem_folder = f"./experiments/run{args.run}/problems/llm_tot_ic/{domain.name}"
plan_folder = f"./experiments/run{args.run}/plans/llm_tot_ic/{domain.name}"
result_folder = f"./experiments/run{args.run}/results/llm_tot_ic/{domain.name}"
if not os.path.exists(problem_folder):
os.system(f"mkdir -p {problem_folder}")
if not os.path.exists(plan_folder):
os.system(f"mkdir -p {plan_folder}")
if not os.path.exists(result_folder):
os.system(f"mkdir -p {result_folder}")
task = args.task
start_time = time.time()
# A. generate problem pddl file
task_suffix = domain.get_task_suffix(task)
task_nl, task_pddl = domain.get_task(task)
text_plan = planner.tot_bfs(task_nl, domain_nl, context, time_left=200, max_depth=10)
# B. write the problem file into the problem folder
text_plan_file_name = f"./experiments/run{args.run}/results/llm_tot_ic/{task_suffix}"
with open(text_plan_file_name, "w") as f:
f.write(text_plan)
end_time = time.time()
print(f"[info] task {task} takes {end_time - start_time} sec")
def llm_ic_planner(args, planner, domain):
"""
Baseline method:
The LLM will be asked to directly give a plan based on the task description.
"""
context = domain.get_context()
domain_pddl = domain.get_domain_pddl()
domain_pddl_file = domain.get_domain_pddl_file()
domain_nl = domain.get_domain_nl()
domain_nl_file = domain.get_domain_nl_file()
# create the tmp / result folders
problem_folder = f"./experiments/run{args.run}/problems/llm_ic/{domain.name}"
plan_folder = f"./experiments/run{args.run}/plans/llm_ic/{domain.name}"
result_folder = f"./experiments/run{args.run}/results/llm_ic/{domain.name}"
if not os.path.exists(problem_folder):
os.system(f"mkdir -p {problem_folder}")
if not os.path.exists(plan_folder):
os.system(f"mkdir -p {plan_folder}")
if not os.path.exists(result_folder):
os.system(f"mkdir -p {result_folder}")
task = args.task
start_time = time.time()
# A. generate problem pddl file
task_suffix = domain.get_task_suffix(task)
task_nl, task_pddl = domain.get_task(task)
prompt = planner.create_llm_ic_prompt(task_nl, domain_nl, context)
text_plan = planner.query(prompt)
# B. write the problem file into the problem folder
text_plan_file_name = f"./experiments/run{args.run}/results/llm_ic/{task_suffix}"
with open(text_plan_file_name, "w") as f:
f.write(text_plan)
end_time = time.time()
print(f"[info] task {task} takes {end_time - start_time} sec")
def print_all_prompts(planner):
for domain_name in DOMAINS:
domain = eval(domain_name.capitalize())()
context = domain.get_context()
domain_pddl = domain.get_domain_pddl()
domain_pddl_file = domain.get_domain_pddl_file()
domain_nl = domain.get_domain_nl()
for folder_name in [
f"./prompts/llm/{domain.name}",
f"./prompts/llm_step/{domain.name}",
f"./prompts/llm_ic/{domain.name}",
f"./prompts/llm_pddl/{domain.name}",
f"./prompts/llm_ic_pddl/{domain.name}"]:
if not os.path.exists(folder_name):
os.system(f"mkdir -p {folder_name}")
for task in range(len(domain)):
task_nl_file, task_pddl_file = domain.get_task_file(task)
task_nl, task_pddl = domain.get_task(task)
task_suffix = domain.get_task_suffix(task)
llm_prompt = planner.create_llm_prompt(task_nl, domain_nl)
llm_stepbystep_prompt = planner.create_llm_stepbystep_prompt(task_nl, domain_nl)
llm_ic_prompt = planner.create_llm_ic_prompt(task_nl, domain_nl, context)
llm_pddl_prompt = planner.create_llm_pddl_prompt(task_nl, domain_nl)
llm_ic_pddl_prompt = planner.create_llm_ic_pddl_prompt(task_nl, domain_pddl, context)
with open(f"./prompts/llm/{task_suffix}.prompt", "w") as f:
f.write(llm_prompt)
with open(f"./prompts/llm_step/{task_suffix}.prompt", "w") as f:
f.write(llm_stepbystep_prompt)
with open(f"./prompts/llm_ic/{task_suffix}.prompt", "w") as f:
f.write(llm_ic_prompt)
with open(f"./prompts/llm_pddl/{task_suffix}.prompt", "w") as f:
f.write(llm_pddl_prompt)
with open(f"./prompts/llm_ic_pddl/{task_suffix}.prompt", "w") as f:
f.write(llm_ic_pddl_prompt)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="LLM-Planner")
parser.add_argument('--domain', type=str, choices=DOMAINS, default="barman")
parser.add_argument('--method', type=str, choices=["llm_ic_pddl_planner",
"llm_pddl_planner",
"llm_planner",
"llm_stepbystep_planner",
"llm_ic_planner",
"llm_tot_ic_planner"],
default="llm_ic_pddl_planner")
parser.add_argument('--time-limit', type=int, default=200)
parser.add_argument('--task', type=int, default=0)
parser.add_argument('--run', type=int, default=0)
parser.add_argument('--print-prompts', action='store_true')
args = parser.parse_args()
# 1. initialize problem domain
domain = eval(args.domain.capitalize())()
# 2. initialize the planner
planner = Planner()
# 3. execute the llm planner
method = {
"llm_ic_pddl_planner" : llm_ic_pddl_planner,
"llm_pddl_planner" : llm_pddl_planner,
"llm_planner" : llm_planner,
"llm_stepbystep_planner": llm_stepbystep_planner,
"llm_ic_planner" : llm_ic_planner,
"llm_tot_ic_planner" : llm_tot_ic_planner,
}[args.method]
if args.print_prompts:
print_all_prompts(planner)
else:
method(args, planner, domain)