forked from taki0112/MUNIT-Tensorflow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
sun2rain_perl.yaml
57 lines (48 loc) · 2.8 KB
/
sun2rain_perl.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
# training options
phase: train # train or test or guide
dataset: sun2rain # dataset_name
augment_flag: true # Image augmentation use or not
GPU: 3 # ID of GPUs to be used for env variable CUDA_VISIBLE_DEVICES
# optimization options
epoch: 10 # The number of epochs to run
iteration: 100000 # The number of training iterations
batch_size: 1 #4 # The batch size
print_freq: 1000 # The number of image_print_freq
save_freq: 1000 # The number of ckpt_save_freq
img_freq: 100 # The number of image summary writing
num_style: 5 # number of styles to sample
direction: a2b # direction of style guided image translation
guide_img: guide.jpg # Style guided image translation
# model options
gan_type: lsgan # GAN loss type [gan / lsgan]
# optimizer
lr: 0.0001 # The learning rate
# loss weights
gan_w: 1.0 # weight of adversarial loss
recon_x_w: 10.0 # weight of image reconstruction loss
recon_s_w: 1.0 # weight of style reconstruction loss
recon_c_w: 1.0 # weight of content reconstruction loss
recon_x_cyc_w: 0.0 # weight of explicit style augmented cycle consistency loss
vgg_w: 1.0 # weight of domain-invariant perceptual loss
vgg_layer_names: VGG16/conv5_3/Relu:0 # layers in the neural network that we want to use for perceptual loss
vgg_weight_file: vgg16/vgg16_weights_notop.h5 # vgg16_weights_notop.h5 is from Keras or use vgg16.npy; models have to bi in vgg16 folder
# generator
ch: 64 # base channel number per layer
mlp_dim: 256 # number of filters in MLP
style_dim: 8 # length of style code
n_sample: 2 # number of sampling layers in content encoder
n_res: 4 # number of residual blocks in content encoder/decoder
# discriminator
n_dis: 4 # number of discriminator layer
n_scale: 3 # number of scales
# data options
img_h: 256 # The size of image hegiht
img_w: 256 # The size of image width
img_ch: 3 # The size of image channel
num_workers: 8 # number of data loading threads
# logging options
prefix: 2perl # Prefix for all directory names
checkpoint_dir: checkpoint # Directory name to save the checkpoints
result_dir: results # Directory name to save the generated images
log_dir: logs # Directory name to save training logs
sample_dir: samples # Directory name to save the samples on training