-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathMDWF_GenModelClimateData_old.py
296 lines (270 loc) · 14.9 KB
/
MDWF_GenModelClimateData_old.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
"""
***************************************************************************
MDWF_GenModelClimateData.py
-------------------------------------
Copyright (C) 2014 TIGER-NET (www.tiger-net.org)
***************************************************************************
* This plugin is part of the Water Observation Information System (WOIS) *
* developed under the TIGER-NET project funded by the European Space *
* Agency as part of the long-term TIGER initiative aiming at promoting *
* the use of Earth Observation (EO) for improved Integrated Water *
* Resources Management (IWRM) in Africa. *
* *
* WOIS is a free software i.e. you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published *
* by the Free Software Foundation, either version 3 of the License, *
* or (at your option) any later version. *
* *
* WOIS is distributed in the hope that it will be useful, but WITHOUT ANY *
* WARRANTY; without even the implied warranty of MERCHANTABILITY or *
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License *
* for more details. *
* *
* You should have received a copy of the GNU General Public License along *
* with this program. If not, see <http://www.gnu.org/licenses/>. *
***************************************************************************
"""
import os
from datetime import date, timedelta, datetime
import numpy
from PyQt4 import QtGui
from processing.core.GeoAlgorithmExecutionException import GeoAlgorithmExecutionException
from processing.core.parameters import *
from SWATAlgorithm import SWATAlgorithm
from ModelFile import ModelFile
from ClimateStationsSWAT import ClimateStationsSWAT
from ZonalStats import ZonalStats
class MDWF_GenModelClimateData(SWATAlgorithm):
MODEL_FILE = "MODEL_FILE"
PCP_DST_FOLDER = "PCP_DST_FOLDER"
TMAX_DST_FOLDER = "TMAX_DST_FOLDER"
TMIN_DST_FOLDER = "TMIN_DST_FOLDER"
SUBCATCH_RES = 'SUBCATCH_RES'
def __init__(self):
super(MDWF_GenModelClimateData, self).__init__(__file__)
def defineCharacteristics(self):
self.name = "3 - Generate model climate data (MDWF)"
self.group = "Model development workflow (MDWF)"
self.addParameter(ParameterFile(MDWF_GenModelClimateData.MODEL_FILE, "Model description file", False, False))
self.addParameter(ParameterFile(MDWF_GenModelClimateData.PCP_DST_FOLDER, "Precipitation folder", True, False))
self.addParameter(ParameterFile(MDWF_GenModelClimateData.TMAX_DST_FOLDER, "Maximum temperature folder", True, False))
self.addParameter(ParameterFile(MDWF_GenModelClimateData.TMIN_DST_FOLDER, "Minimum temperature folder", True, False))
self.addParameter(ParameterNumber(MDWF_GenModelClimateData.SUBCATCH_RES, "Resolution of subcatchment map", 0.001, 0.5, 0.01))
def processAlgorithm(self, progress):
progress.setConsoleInfo("Loading model and data files...")
# Get inputs
model_file = str(self.getParameterValue(MDWF_GenModelClimateData.MODEL_FILE))
pcp_folder = str(self.getParameterValue(MDWF_GenModelClimateData.PCP_DST_FOLDER))
tmax_folder = str(self.getParameterValue(MDWF_GenModelClimateData.TMAX_DST_FOLDER))
tmin_folder = str(self.getParameterValue(MDWF_GenModelClimateData.TMIN_DST_FOLDER))
subcatchmap_res = float(self.getParameterValue(MDWF_GenModelClimateData.SUBCATCH_RES))
# Check inputs
for folder in [pcp_folder, tmax_folder, tmin_folder]:
if not os.path.isdir(folder):
raise GeoAlgorithmExecutionException('No such directory: \"' + folder + '\" ')
if not os.path.isfile(model_file):
raise GeoAlgorithmExecutionException('No such file: \"' + model_file + '\" ')
# Load model
model = ModelFile(model_file)
# Create log file
log_file = open(model.Path + os.sep + "log.txt", "w")
# Write current date to log file
now = date.today()
log_file.write(self.name + ' run date: ' + now.strftime('%Y%m%d') + '\n')
# Load SWAT stations file
stations = ClimateStationsSWAT(model.Path + os.sep + model.desc['Stations'])
progress.setConsoleInfo("Reading old climate data...")
# Getting SWAT .pcp data
pcp_juliandates, first_pcp_date, last_pcp_date, pcp_array = stations.readSWATpcpFiles(log_file)
## numpy.savetxt(model.Path + os.sep + 'pcp_array.csv', pcp_array, delimiter=",")
## log_file.write(str(pcp_dates))
# Getting SWAT .tmp data
tmp_juliandates, first_tmp_date, last_tmp_date, tmp_max_array, tmp_min_array = stations.readSWATtmpFiles(log_file)
## numpy.savetxt(model.Path + os.sep + 'tmp_max_array.csv', tmp_max_array, delimiter=",")
# Delete last forecast in .pcp and .tmp data if Real Time model
if model.desc['Type'] == 'RT':
# Read last forecast dates from file
forecast_dates_file = model.Path + os.sep + model.desc['ForecastDateFile']
forecast_dates = {}
forecast_file=open(forecast_dates_file,'r').readlines()
if not forecast_file[0].find('Forecast dates file') == -1:
for line in range(1,len(forecast_file)):
(key, val) = forecast_file[line].split()
forecast_dates[key] = val
# setting new last_dates and crop arrays
# APCP
new_last_pcp_date = datetime.strptime(forecast_dates['APCP'], "%Y%m%d").date() - timedelta(days=1)
dif = (last_pcp_date - new_last_pcp_date).days
if dif > 0:
pcp_array = pcp_array[:-dif,:]
pcp_juliandates = pcp_juliandates[:-dif]
last_pcp_date = new_last_pcp_date
# TMP
new_last_tmp_date = datetime.strptime(forecast_dates['TMP'], "%Y%m%d").date() - timedelta(days=1)
dif = (last_tmp_date - new_last_tmp_date).days
if dif > 0:
tmp_max_array = tmp_max_array[:-dif,:]
tmp_min_array = tmp_min_array[:-dif,:]
tmp_juliandates = tmp_juliandates[:-dif]
last_tmp_date = new_last_tmp_date
progress.setConsoleInfo("Searching for new files...")
# Getting list of new pcp data files
new_pcp_files = []
new_pcp_enddate = last_pcp_date
dirs = os.listdir(pcp_folder)
if model.desc['Type'] == 'RT':
pcp_forecast_var = 'APCP_Forecast_'
else:
pcp_forecast_var = 'none'
pcp_var_GFS = 'APCP.tif'
pcp_var_RFE = '_rain_.tif'
for f in dirs:
if (pcp_var_GFS in f) or (pcp_var_RFE in f):
file_date = datetime.strptime(f[0:8], "%Y%m%d").date()
# Only get new files
if (last_pcp_date < file_date):
new_pcp_files.append(pcp_folder + os.sep + f)
# Find the last date
if new_pcp_enddate < file_date:
new_pcp_enddate = file_date
# Append forecast files for real-time
elif (pcp_forecast_var in f) and (model.desc['Type'] == 'RT'):
file_date = datetime.strptime(f[0:8], "%Y%m%d").date()
# Only get new files
if (last_pcp_date < file_date):
new_pcp_files.append(pcp_folder + os.sep + f)
# Find the last date
if new_pcp_enddate < file_date:
new_pcp_enddate = file_date
new_pcp_forecast_date = f.split(pcp_forecast_var)[1].split('.tif')[0]
# Getting list of new tmax data files
new_tmax_files = []
new_tmax_enddate = last_tmp_date
tmax_var_GFS = 'TMAX.tif'
tmax_var_ECMWF = '_TMAX_ECMWF.tif'
tmax_forecast_var = 'TMAX_Forecast_'
dirs = os.listdir(tmax_folder)
for f in dirs:
if (tmax_var_GFS in f) or (tmax_var_ECMWF in f):
file_date = datetime.strptime(f[0:8], "%Y%m%d").date()
# Only get new files
if (last_tmp_date < file_date):
new_tmax_files.append(tmax_folder + os.sep + f)
# Find the last date
if new_tmax_enddate < file_date:
new_tmax_enddate = file_date
# Append forecast files for real-time
elif (tmax_forecast_var in f) and (model.desc['Type'] == 'RT'):
file_date = datetime.strptime(f[0:8], "%Y%m%d").date()
# Only get new files
if (last_tmp_date < file_date):
new_tmax_files.append(tmax_folder + os.sep + f)
# Find the last date
if new_tmax_enddate < file_date:
new_tmax_enddate = file_date
new_tmax_forecast_date = f.split(tmax_forecast_var)[1].split('.tif')[0]
# Getting list of new tmin data files
new_tmin_files = []
new_tmin_enddate = last_tmp_date
tmin_var_GFS = 'TMIN.tif'
tmin_var_ECMWF = '_TMIN_ECMWF.tif'
tmin_forecast_var = 'TMIN_Forecast_'
dirs = os.listdir(tmin_folder)
for f in dirs:
if (tmin_var_GFS in f) or (tmin_var_ECMWF in f):
file_date = datetime.strptime(f[0:8], "%Y%m%d").date()
# Only get new files
if (last_tmp_date < file_date):
new_tmin_files.append(tmin_folder + os.sep + f)
# Find the last date
if new_tmin_enddate < file_date:
new_tmin_enddate = file_date
# Append forecast files for real-time
elif (tmin_forecast_var in f) and (model.desc['Type'] == 'RT'):
file_date = datetime.strptime(f[0:8], "%Y%m%d").date()
# Only get new files
if (last_tmp_date < file_date):
new_tmin_files.append(tmin_folder + os.sep + f)
# Find the last date
if new_tmin_enddate < file_date:
new_tmin_enddate = file_date
new_tmin_forecast_date = f.split(tmin_forecast_var)[1].split('.tif')[0]
## log_file.write('APCP files: ' + str(new_pcp_files) + '\n')
## log_file.write('TMAX files: ' + str(new_tmax_files) + '\n')
## log_file.write('TMIN files: ' + str(new_tmin_files) + '\n')
progress.setConsoleInfo("Extracting precipitation data...")
# Process new APCP files
if not new_pcp_files == []:
try:
correct_factor = float(model.desc['PcpCorrFact'])
except:
correct_factor = None
# Get new array
pcp_startdate = last_pcp_date + timedelta(days=1)
new_pcp_juliandates, new_pcp_array = ZonalStats(pcp_startdate, new_pcp_enddate, model.Path, \
model.desc['ModelName'], model.Path+os.sep+model.desc['Shapefile'], model.desc['SubbasinColumn'], \
subcatchmap_res, new_pcp_files, log_file, GeoAlgorithmExecutionException, None, correct_factor)
# Combine arrays
pcp_juliandates = numpy.concatenate((pcp_juliandates, new_pcp_juliandates), axis=0)
pcp_array = numpy.concatenate((pcp_array, new_pcp_array), axis=0)
progress.setConsoleInfo("Writing new precipitation files...")
# Write files
stations.writeSWATpcpFiles(pcp_juliandates, pcp_array, log_file)
progress.setConsoleInfo("Extracting temperature data...")
# Process Temperature files
if not (new_tmax_files == [] and new_tmin_files == []):
# Get new array
# TMAX
# Get corrections
if tmax_var_ECMWF in new_tmax_files[0]:
correct_number = -273.15
pass
else:
correct_number = None
tmp_startdate = last_tmp_date + timedelta(days=1)
new_tmax_juliandates, new_tmp_max_array = ZonalStats(tmp_startdate, new_tmax_enddate, model.Path, \
model.desc['ModelName'], model.Path+os.sep+model.desc['Shapefile'], model.desc['SubbasinColumn'], \
subcatchmap_res, new_tmax_files, log_file, GeoAlgorithmExecutionException, correct_number, None)
# TMIN
if tmin_var_ECMWF in new_tmin_files[0]:
correct_number = -273.15
pass
else:
correct_number = None
new_tmin_juliandates, new_tmp_min_array = ZonalStats(tmp_startdate, new_tmin_enddate, model.Path, \
model.desc['ModelName'], model.Path+os.sep+model.desc['Shapefile'], model.desc['SubbasinColumn'], \
subcatchmap_res, new_tmin_files, log_file, GeoAlgorithmExecutionException, correct_number, None)
# Make shure tmax and tmin have same end days
dif = (len(new_tmax_juliandates)-len(new_tmin_juliandates))
if dif > 0:
new_tmp_max_array = new_tmp_max_array[:-dif,:]
new_tmax_juliandates = new_tmax_juliandates[:-dif]
if model.desc['Type'] == 'RT':
new_tmp_forecast_date = new_tmin_forecast_date
elif dif < 0:
new_tmp_min_array = new_tmp_min_array[:-dif,:]
new_tmin_juliandates = new_tmin_juliandates[:-dif,:]
if model.desc['Type'] == 'RT':
new_tmp_forecast_date = new_tmax_forecast_date
else:
if model.desc['Type'] == 'RT':
new_tmp_forecast_date = new_tmax_forecast_date
progress.setConsoleInfo("Writing new temperature files...")
# Combine arrays
# TMAX
tmp_juliandates = numpy.concatenate((tmp_juliandates, new_tmax_juliandates), axis=0)
tmp_max_array = numpy.concatenate((tmp_max_array, new_tmp_max_array), axis=0)
# TMIN
tmp_min_array = numpy.concatenate((tmp_min_array, new_tmp_min_array), axis=0)
# Write files
stations.writeSWATtmpFiles(tmp_juliandates, tmp_max_array, tmp_min_array, log_file)
progress.setConsoleInfo("Update model files...")
# Updating forecast file
if model.desc['Type'] == 'RT':
if new_pcp_files == []:
new_pcp_forecast_date = forecast_dates['APCP']
forecast_file=open(forecast_dates_file,'w')
forecast_file.write('Forecast dates file \n')
forecast_file.write('APCP ' + new_pcp_forecast_date + '\n')
forecast_file.write('TMP ' + new_tmp_forecast_date + '\n')
log_file.close()