forked from denysvitali/paper-fix
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.cpp
360 lines (291 loc) · 10.4 KB
/
main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/imgcodecs.hpp>
#include <iostream>
#include <queue>
#include <set>
#include <vector>
#include <algorithm>
using namespace cv;
using namespace std;
const char* wndname = "Paper Fix";
bool ROTATE_FLAG = false;
static double calculateArea(const vector<Point>& rectangle) {
Point prevPoint;
double area1, area2;
double ab = sqrt(pow(rectangle[0].x - rectangle[1].x,2) + pow(rectangle[0].y - rectangle[1].y,2));
double bc = sqrt(pow(rectangle[1].x - rectangle[2].x,2) + pow(rectangle[1].y - rectangle[2].y,2));
area1 = (ab + bc) / 2.0;
double cd = sqrt(pow(rectangle[2].x - rectangle[3].x,2) + pow(rectangle[2].y - rectangle[3].y, 2));
double ad = sqrt(pow(rectangle[3].x - rectangle[0].x, 2) + pow(rectangle[3].y - rectangle[0].y,2));
area2 = (cd + ad) / 2.0;
return area1 + area2;
}
class Rectangle {
public:
Rectangle(vector<Point> v) : m_v{v} {
/*for(Point& p: v){
cout << p << ",";
}
cout << endl;*/
computeArea();
}
double area() const {
return m_area;
}
const Point& operator [] (const int index){
return m_v[index];
}
size_t size() const {
return m_v.size();
}
vector<Point> vec() const {
return m_v;
}
bool equals(const Rectangle& o) const {
for(size_t i=0; i<o.m_v.size(); i++){
if(m_v[i].x != o.m_v[i].x){
return false;
}
if(m_v[i].y != o.m_v[i].y){
return false;
}
}
cout << "Equals! " << endl;
return true;
}
private:
vector<Point> m_v;
double m_area = 0.0;
void computeArea(){
m_area = calculateArea(m_v);
}
};
void usage(int argc, char* argv[]){
cout << "Usage: ";
cout << argv[0] << " [options] input.jpg output.jpg" << endl;
cout << "Options: " << endl;
cout << "-r / --rotate\t\tRotates the final image by 180° (upside down)" << endl;
}
static double angle( Point pt1, Point pt2, Point pt0 )
{
double dx1 = pt1.x - pt0.x;
double dy1 = pt1.y - pt0.y;
double dx2 = pt2.x - pt0.x;
double dy2 = pt2.y - pt0.y;
return (dx1*dx2 + dy1*dy2)/sqrt((dx1*dx1 + dy1*dy1)*(dx2*dx2 + dy2*dy2) + 1e-10);
}
void find_rectangles(Mat& image, vector<vector<Point> >& rectangles)
{
// blur will enhance edge detection
Mat blurred(image);
medianBlur(image, blurred, 9);
Mat gray0(blurred.size(), CV_8U), gray;
vector<vector<Point>> contours;
// find rectangles in every color plane of the image
for (int c = 0; c < 3; c++)
{
int ch[] = {c, 0};
mixChannels(&blurred, 1, &gray0, 1, ch, 1);
// try several threshold levels
const int threshold_level = 2;
for (int l = 0; l < threshold_level; l++)
{
// Use Canny instead of zero threshold level!
// Canny helps to catch rectangles with gradient shading
if (l == 0)
{
Canny(gray0, gray, 10, 20, 3); //
// Dilate helps to remove potential holes between edge segments
dilate(gray, gray, Mat(), Point(-1,-1));
}
else
{
gray = gray0 >= (l+1) * 255 / threshold_level;
}
// Find contours and store them in a list
findContours(gray, contours, CV_RETR_LIST, CV_CHAIN_APPROX_SIMPLE);
// Test contours
vector<Point> approx;
for (size_t i = 0; i < contours.size(); i++)
{
// approximate contour with accuracy proportional
// to the contour perimeter
approxPolyDP(Mat(contours[i]), approx, arcLength(Mat(contours[i]), true)*0.02, true);
// Note: absolute value of an area is used because
// area may be positive or negative - in accordance with the
// contour orientation
if (approx.size() == 4 &&
fabs(contourArea(Mat(approx))) > 1000 &&
isContourConvex(Mat(approx)))
{
double maxCosine = 0;
for (int j = 2; j < 5; j++)
{
double cosine = fabs(angle(approx[j%4], approx[j-2], approx[j-1]));
maxCosine = MAX(maxCosine, cosine);
}
if (maxCosine < 0.3)
rectangles.push_back(approx);
}
}
}
}
}
/*
static int getPointIndex(vector<Point>& vp, Point2f& p){
for(size_t i=0; i<vp.size(); i++){
if(vp[i].x == p.x && vp[i].y == p.y){
return i;
}
}
return -1;
}
*/
template <class T> static Mat* drawRectangles(Mat& image, Mat& originalImage, set<Rectangle, T>& rectangles, int rows, int cols )
{
auto cmp = [](Rectangle& f, Rectangle& s) { return f.area() <= s.area(); };
priority_queue<Rectangle, std::vector<Rectangle>, decltype(cmp)> pq(cmp);
double rotation = 0;
int i = 0;
cout << "Found " << rectangles.size() << " rectangles" << endl;
for(const Rectangle& s : rectangles)
{
pq.push(s);
//double area = s.area();
//cout << "Rectangle " << i << ": Area = " << area << endl;
i++;
}
int count = 0;
vector<Scalar> colorArr = {Scalar(0,255,0),
Scalar(0,0,255), Scalar(255,0,0)};
while(!pq.empty() && count < 1){
const Rectangle& s = pq.top();
pq.pop();
vector<Point> points = s.vec();
const Point* p = &(points[0]);
int n = (int) s.size();
bool insideOrigImage = true;
for(Point& p: points){
if(!p.inside(Rect(0,0, cols * 1.05, rows * 1.05))){
insideOrigImage = false;
break;
}
}
if (p-> x > 3 && p->y > 3 && insideOrigImage){
if(rotation == 0) {
rotation = atan2(p[0].y, p[1].y);
//cout << "Rotation: " << rotation << endl;
}
polylines(image, &p, &n, 1, true, colorArr[count%3], 3, LINE_AA);
Rect boundRect = boundingRect(points);
vector<Point2f> quad_pts, square_pts;
vector<Point> points_clone = points;
// cout << "Points: " << points_clone << endl;
Point2f topLeft, topRight, bottomLeft, bottomRight;
sort(points_clone.begin(), points_clone.end(), [](const Point& lhs, const Point& rhs){
return lhs.y < rhs.y;
});
if(points_clone[0].x > points_clone[1].x){
topLeft = points_clone[1];
topRight = points_clone[0];
} else {
topLeft = points_clone[0];
topRight = points_clone[1];
}
if(points_clone[2].x > points_clone[3].x){
bottomLeft = points_clone[3];
bottomRight = points_clone[2];
} else {
bottomLeft = points_clone[2];
bottomRight = points_clone[3];
}
quad_pts.push_back(topLeft);
quad_pts.push_back(bottomLeft);
quad_pts.push_back(topRight);
quad_pts.push_back(bottomRight);
square_pts.push_back(Point2f(boundRect.x, boundRect.y));
square_pts.push_back(Point2f(boundRect.x, boundRect.y + boundRect.height));
square_pts.push_back(Point2f(boundRect.x + boundRect.width, boundRect.y));
square_pts.push_back(Point2f(boundRect.x + boundRect.width, boundRect.y + boundRect.height));
rectangle(image,boundRect,Scalar(255,0,0),1,8,0);
Mat transmtx = getPerspectiveTransform(quad_pts,square_pts);
Mat transformed = Mat::zeros(image.rows, image.cols, CV_8UC3);
warpPerspective(originalImage, transformed, transmtx, image.size());
//imwrite("transformed.jpg", transformed);
Mat* ROI = new Mat(transformed, Rect(boundRect.x, boundRect.y, boundRect.width, boundRect.height));
//imwrite("cropped.jpg", *ROI);
return ROI;
}
}
return nullptr;
}
static Mat* expandImage( Mat& src ){
int top = (int) (0.05*src.rows);
int bottom = (int) (0.05*src.rows);
int left = (int) (0.05*src.cols);
int right = (int) (0.05*src.cols);
Mat* dst = new Mat{};
copyMakeBorder(src, *dst, top, bottom, left, right, BORDER_CONSTANT, 0);
return dst;
}
double distance(Point& p1, Point& p2){
return sqrt(pow(p1.x - p2.x, 2) + pow(p1.y - p2.y, 2));
}
void rotate(cv::Mat& src, double angle, cv::Mat& dst){
cv::Point2f ptCp(src.cols*0.5, src.rows*0.5);
cv::Mat M = cv::getRotationMatrix2D(ptCp, angle, 1.0);
cv::warpAffine(src, dst, M, src.size(), cv::INTER_CUBIC); //Nearest is too rough,
}
int main(int argc, char* argv[]){
int options_pos = 1;
for(int i=1; i<argc; i++){
if(strcmp(argv[i], "-r") == 0 || strcmp(argv[i], "--rotate") == 0){
ROTATE_FLAG=true;
options_pos++;
}
}
Mat image;
if(options_pos + 2 > argc){
cerr << "Invalid input" << endl;
usage(argc, argv);
return 1;
}
image = imread(argv[options_pos], CV_LOAD_IMAGE_COLOR);
if(!image.data){
cerr << "No image data." << endl;
return 1;
}
//Mat gray_image;
//cvtColor( image, gray_image, CV_BGR2GRAY );
vector<vector<Point>> rectangles;
Mat expandedImage = *expandImage(image);
Mat originalImageExpanded;
expandedImage.copyTo(originalImageExpanded);
find_rectangles(expandedImage, rectangles);
auto cmp = [](Rectangle a, Rectangle b) { return !a.equals(b); };
set<Rectangle, decltype(cmp)> theRectangles(cmp);
Point topLeft {(int) (0.05*image.cols), (int) (0.05*image.rows)};
Point bottomLeft {(int) (0.05*image.cols), (int) (1.05*image.rows)};
//cout << "Top: " << topLeft << ", BottomLeft: " << bottomLeft << endl;
for(vector<Point> p : rectangles){
//cout << p << endl;
if(distance(p[0],topLeft) < 5 && distance(p[1],bottomLeft) < 5){
cout << "Ignoring this rectangle because it's basically a rectangle containing our picture." << endl;
continue;
}
theRectangles.insert(Rectangle(p));
}
Mat* finalImage = drawRectangles(expandedImage, originalImageExpanded, theRectangles, image.rows, image.cols);
if(ROTATE_FLAG){
// Rotate by 180°
Mat rotatedFinal;
rotate(*finalImage, rotatedFinal, 1);
imwrite(argv[options_pos + 1], rotatedFinal);
} else {
Mat outputImage = *finalImage;
imwrite(argv[options_pos + 1], outputImage);
}
delete finalImage;
}