-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoverview.txt
99 lines (93 loc) · 3.93 KB
/
overview.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
Formalisation overview:
LiftSNR:
S : {r c : Shape} → Set
_+S_ : ∀ {r c} → M s r c → M s r c → M s r c
_*S_ : ∀ {r m c} → M s r m → M s m c → M s r c
zerS : (r c : Shape) → M s r c
_≃S_ : {r c : Shape} → M s r c → M s r c → Set
reflS : (r c : Shape) → {X : M s r c} → X ≃S X
symS : (r c : Shape) → {i j : M s r c} → i ≃S j → j ≃S i
transS : (r c : Shape) → {i j k : M s r c} → i ≃S j → j ≃S k → i ≃S k
assocS : (r c : Shape) (x y z : M s r c) → ((x +S y) +S z) ≃S (x +S (y +S z))
<+S> : (r c : Shape) {x y u v : M s r c} → x ≃S y → u ≃S v → (x +S u) ≃S (y +S v)
identSˡ : (r c : Shape) (x : M s r c) → zerS r c +S x ≃S x
commS : (r c : Shape) → (x y : M s r c) → (x +S y) ≃S (y +S x)
setoidS : {r c : Shape} → Setoid _ _
identSʳ : (r : Shape) (c : Shape) (x : M s r c) → x +S zerS r c ≃S x
zerolHelp : ∀ (r : Shape) {m m' c : Shape}
(x : M s m c) (y : M s m' c) →
zerS r m *S x ≃S zerS r c →
zerS r m' *S y ≃S zerS r c →
zerS r m *S x +S zerS r m' *S y ≃S zerS r c
zeroSˡ : (a b c : Shape) (x : M s b c) → (zerS a b *S x) ≃S zerS a c
zerorHelp : ∀ r {m m' c}
(x : M s r m) (x₁ : M s r m') →
x *S zerS m c ≃S zerS r c →
x₁ *S zerS m' c ≃S zerS r c →
x *S zerS m c +S x₁ *S zerS m' c
≃S zerS r c
zeroSʳ : (a b c : Shape) (x : M s a b) → (x *S zerS b c) ≃S zerS a c
<*S> : (a b c : Shape) {x y : M s a b} {u v : M s b c} → x ≃S y → u ≃S v → (x *S u) ≃S (y *S v)
idemS : (r c : Shape) (x : M s r c) → x +S x ≃S x
swapMid : {r c : Shape} (x y z w : M s r c) → (x +S y) +S (z +S w) ≃S (x +S z) +S (y +S w)
distlHelp : ∀ {a b b₁ c₁}
(x : M s a b)
(y z : M s b c₁)
(x₁ : M s a b₁)
(y₁ z₁ : M s b₁ c₁) →
(x *S (y +S z)) ≃S (x *S y +S x *S z) →
(x₁ *S (y₁ +S z₁)) ≃S (x₁ *S y₁ +S x₁ *S z₁) →
(x *S (y +S z) +S x₁ *S (y₁ +S z₁))
≃S ((x *S y +S x₁ *S y₁) +S x *S z +S x₁ *S z₁)
distlS : {a b c : Shape} (x : M s a b) (y z : M s b c) → (x *S (y +S z)) ≃S ((x *S y) +S (x *S z))
distrHelp : ∀ {r m m₁ c : Shape}
(x : M s m c)
(y z : M s r m)
(x₁ : M s m₁ c)
(y₁ z₁ : M s r m₁) →
((y +S z) *S x) ≃S (y *S x +S z *S x) →
((y₁ +S z₁) *S x₁) ≃S (y₁ *S x₁ +S z₁ *S x₁) →
((y +S z) *S x +S (y₁ +S z₁) *S x₁)
≃S ((y *S x +S y₁ *S x₁) +S z *S x +S z₁ *S x₁)
distrS : {r m c : Shape} (x : M s m c) (y z : M s r m) → ((y +S z) *S x) ≃S ((y *S x) +S (z *S x))
distrS' : {r m c : Shape} (x : M s m c) (y z : M s r m) → ((y *S x) +S (z *S x)) ≃S ((y +S z) *S x)
Square : Shape → SemiNearRing
SNR : SemiNearRing
----------------
LiftCSR.lagda
EqS : ∀ {sh} → M s sh sh → M s sh sh → Set
lemma2-1-1 : ∀ sh sh1 (A : M s sh sh) (R : M s sh sh1) →
(I + A) * R ≃S R + A * R
module lemma1
(sh sh1 : Shape)
(C C* : M s sh sh)
(D : M s sh sh1)
(E : M s sh1 sh)
(Δ* : M s sh1 sh1)
(ih : C* ≃S I + C * C*) where
X = D * Δ* * E * C*
entire-lem1 : C* * X ≃S C * C* * X + X
module lemma2
(sh sh1 : Shape)
(C C* : M s sh sh)
(D : M s sh sh1) (E : M s sh1 sh)
(Δ* : M s sh1 sh1) where
X = D * Δ* * E * C*
entire-lem2 :
C * C* + (C * C* * X + X) ≃S
C * (C* + C* * X) + X
module lemma3
(sh sh1 : Shape)
(C* : M s sh sh)
(D : M s sh sh1)
(E : M s sh1 sh)
(F : M s sh1 sh1)
(Δ* : M s sh1 sh1) where
Δ : M s sh1 sh1
Δ = F + E * C* * D
entire-lem3 :
(Δ * Δ*) * E * C* ≃S
E * C* * D * Δ* * E * C*
+ F * Δ* * E * C*
entireQS : ∀ {sh} (c : M s sh sh) → Σ (M s sh sh) λ c* → c* ≃S I + c * c*
Square : Shape → ClosedSemiRing