-
Notifications
You must be signed in to change notification settings - Fork 19
/
upernet_transnext_base_512x512_160k_ade20k_ss.py
43 lines (40 loc) · 1.43 KB
/
upernet_transnext_base_512x512_160k_ade20k_ss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
_base_ = [
'_base_/models/upernet_transnext.py',
'_base_/datasets/ade20k.py',
'_base_/default_runtime.py',
'_base_/schedules/schedule_160k.py'
]
crop_size = (512, 512)
# optimizer
model = dict(
backbone=dict(
pretrained=None,
type='transnext_base',
pretrain_size=224,
img_size=512,
is_extrapolation=False,
),
decode_head=dict(
in_channels=[96, 192, 384, 768],
num_classes=150
),
auxiliary_head=dict(
in_channels=384,
num_classes=150
),
test_cfg=dict(mode='slide', crop_size=crop_size, stride=(341, 341)),
)
# optimizer
optimizer = dict(_delete_=True, type='AdamW', lr=0.00006, betas=(0.9, 0.999), weight_decay=0.05,
paramwise_cfg=dict(custom_keys={'query_embedding': dict(decay_mult=0.),
'relative_pos_bias_local': dict(decay_mult=0.),
'cpb': dict(decay_mult=0.),
'temperature': dict(decay_mult=0.),
'norm': dict(decay_mult=0.)}))
lr_config = dict(_delete_=True, policy='poly',
warmup='linear',
warmup_iters=1500,
warmup_ratio=1e-6,
power=1.0, min_lr=0.0, by_epoch=False)
# By default, models are trained on 8 GPUs with 2 images per GPU
data=dict(samples_per_gpu=2)