forked from OAID/Tengine
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtm_mobilefacenet.cpp
160 lines (140 loc) · 4.15 KB
/
tm_mobilefacenet.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <vector>
#include "common.h"
#include "tengine_c_api.h"
#include "tengine_operations.h"
#define DEFAULT_MEAN1 104.007
#define DEFAULT_MEAN2 116.669
#define DEFAULT_MEAN3 122.679
#define MOBILE_FACE_HEIGHT 110
#define MOBILE_FACE_WIDTH 110
graph_t graph;
tensor_t input_tensor;
tensor_t output_tensor;
int feature_len;
void init(const char* modelfile)
{
int dims[4] = {1, 3, MOBILE_FACE_HEIGHT, MOBILE_FACE_WIDTH};
init_tengine();
fprintf(stderr, "tengine version: %s\n", get_tengine_version());
graph = create_graph(NULL, "tengine", modelfile);
if (graph == NULL)
{
fprintf(stderr, "grph nullptr %d\n", get_tengine_errno());
}
else
{
fprintf(stderr, "success init graph\n");
}
input_tensor = get_graph_input_tensor(graph, 0, 0);
set_tensor_shape(input_tensor, dims, 4);
int rc = prerun_graph(graph);
output_tensor = get_graph_output_tensor(graph, 0, 0);
get_tensor_shape(output_tensor, dims, 4);
feature_len = dims[1];
fprintf(stderr, "mobilefacenet prerun %d\n", rc);
}
int getFeature(const char* imagefile, float* feature)
{
int height = MOBILE_FACE_HEIGHT;
int width = MOBILE_FACE_WIDTH;
int img_size = height * width * 3;
int dims[] = {1, 3, height, width};
float means[3] = {DEFAULT_MEAN1, DEFAULT_MEAN2, DEFAULT_MEAN3};
float scales[3] = {1, 1, 1};
std::vector<float> input_data(img_size);
get_input_data(imagefile, input_data.data(), height, width, means, scales);
set_tensor_buffer(input_tensor, input_data.data(), img_size * sizeof(float));
if (run_graph(graph, 1) < 0)
{
fprintf(stderr, "run_graph fail");
return -1;
}
float* data = ( float* )get_tensor_buffer(output_tensor);
int outsize;
outsize = get_tensor_buffer_size(output_tensor) / sizeof(float);
for (int i = 0; i < outsize; i++)
feature[i] = data[i];
return outsize;
}
void normlize(float* feature, int size)
{
float norm = 0;
for (int i = 0; i < size; ++i)
{
norm += feature[i] * feature[i];
}
for (int i = 0; i < size; ++i)
{
feature[i] /= sqrt(norm);
}
}
void release()
{
release_graph_tensor(input_tensor);
release_graph_tensor(output_tensor);
destroy_graph(graph);
}
void show_usage()
{
fprintf(stderr, "[Usage]: [-h]\n [-m model_file] [-a person_a -b person_b]\n [-t thread_count]\n");
fprintf(stderr, "\nmobilefacenet example: \n ./mobilefacenet -m /path/to/mobilenet.tmfile -a "
"/path/to/person_a.jpg -b /path/to/person_b.jpg\n");
}
int main(int argc, char* argv[])
{
char* model_file = NULL;
char* person_a = NULL;
char* person_b = NULL;
int res;
while ((res = getopt(argc, argv, "m:a:b:h")) != -1)
{
switch (res)
{
case 'm':
model_file = optarg;
break;
case 'a':
person_a = optarg;
break;
case 'b':
person_b = optarg;
break;
case 'h':
show_usage();
return 0;
default:
break;
}
}
/* check files */
if (model_file == NULL)
{
fprintf(stderr, "Error: Tengine model file not specified!\n");
show_usage();
return -1;
}
if (!check_file_exist(model_file) || !check_file_exist(person_a) || !check_file_exist(person_b))
return -1;
init(model_file);
std::vector<float> featurea(feature_len);
std::vector<float> featureb(feature_len);
int outputsizea = getFeature(person_a, featurea.data());
int outputsizeb = getFeature(person_b, featureb.data());
if (outputsizea != feature_len || outputsizeb != feature_len)
{
fprintf(stderr, "getFeature feature out len error");
}
normlize(featurea.data(), feature_len);
normlize(featureb.data(), feature_len);
float sim = 0;
for (int i = 0; i < feature_len; ++i)
{
sim += featurea[i] * featureb[i];
}
fprintf(stderr, "the cosine sim of person_a and person_b is %f\n", sim);
release();
return 0;
}