forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLinearAlgebraUtils.h
151 lines (130 loc) · 5.81 KB
/
LinearAlgebraUtils.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
#include <ATen/ATen.h>
#include <ATen/ExpandUtils.h>
#include <limits>
namespace at { namespace native {
/*
* Clones a Tensor so that the following conditions hold:
* If we think of a Tensor of having size (B, M, N), where B is any number
* of batch dimensions, then:
* - Each (M, N) matrix is in column major form
* - Let Tensor P have size (B, M, N) and Q have size (B, M', N').
* Then when laid out in memory, the M by N matrix starting at
* P.data_ptr()[b * M * N] is of the same corresponding batch as the M' by N'
* matrix starting at Q.data_ptr()[b * M' * N'].
*/
static inline Tensor cloneBatchedColumnMajor(const Tensor& src) {
// If src is already in batched column major format, then
// this will be efficient (no reordering of the data will occur)
// because the first transpose will make the tensor contiguous,
// and cloning a contiguous tensor is fast.
auto result = src.transpose(-2, -1).clone();
result.transpose_(-2, -1);
return result;
}
/*
* Given batches of matrices with arbitrary batch dim,
* computes the number of batches.
*/
static inline int64_t batchCount(const Tensor& batched_matrices) {
int64_t result = 1;
for (int64_t i = 0; i < batched_matrices.ndimension() - 2; i++) {
result *= batched_matrices.size(i);
}
return result;
}
// Computes the number of elements of a matrix in a batched matrix tensor
static inline int64_t matrixStride(const Tensor& batched_matrices) {
return batched_matrices.size(-1) * batched_matrices.size(-2);
}
/* Checks a necessary property for the triu and tril implementations, hence the name.
* Here batch contiguity is checked for tensors with greater than 4 dimensions.
* Contiguous tensors and tensors with less than 3 dimensions pass this check
*/
static inline bool checkTrilTriuBatchContiguous(const Tensor& tensor) {
// Complete contiguity is the most desired property, which is why
// we return true if the tensor is contiguous
if (tensor.is_contiguous()) return true;
int64_t dims = tensor.dim();
// Tensors with dimension less than 4 are handled by default
if (dims <= 3) return true;
int64_t expected_stride = tensor.size(-1) * tensor.size(-2);
for (int64_t i = dims - 3; i >= 0; i--) {
if (expected_stride != tensor.stride(i)) return false;
expected_stride *= tensor.size(i);
}
return true;
}
// Returns the epsilon value for floating types except half
static inline double _get_epsilon(const ScalarType& sc_type) {
switch (sc_type) {
case at::ScalarType::Float:
return static_cast<double>(std::numeric_limits<float>::epsilon());
case at::ScalarType::Double:
return std::numeric_limits<double>::epsilon();
default:
AT_ERROR("This function doesn't handle types other than float and double");
}
}
// Validates input shapes for linear solve methods (gesv, cholesky_solve)
static inline void linearSolveCheckInputs(const Tensor& self, const Tensor& A) {
AT_CHECK(A.size(-1) == A.size(-2),
"A must be batches of square matrices, "
"but they are ", A.size(-1), " by ", A.size(-2), " matrices");
AT_CHECK(A.size(-1) == self.size(-2),
"Incompatible matrix sizes for matmul: each A "
"matrix is ", A.size(-1), " by ", A.size(-1),
" but each b matrix is ", self.size(-2), " by ", self.size(-1));
}
// Validates input shapes for operations on batches of square matrices (inverse, cholesky)
static inline void squareCheckInputs(const Tensor& self) {
AT_CHECK(self.size(-1) == self.size(-2),
"A must be batches of square matrices, "
"but they are ", self.size(-1), " by ", self.size(-2), " matrices");
}
/*
* Given a vector of int64_t infos, obtained after a batch operations,
* this function checks if the computation over all these batches has been
* successful (info = 0) or not, and report in case of the latter.
*/
static inline void batchCheckErrors(std::vector<int64_t>& infos, const char* name) {
for (size_t i = 0; i < infos.size(); i++) {
auto info = infos[i];
if (info < 0) {
AT_ERROR(name, ": For batch ", i, ": Argument ", -info, " has illegal value");
} else if (info > 0) {
AT_ERROR(name, ": For batch ", i, ": U(", info, ",", info, ") is zero, singular U.");
}
}
}
/*
* Given a info int, obtained after a single operation, this function check if the computation
* has been successful (info = 0) or not, and report in case of the latter.
*/
static inline void singleCheckErrors(int64_t info, const char* name) {
if (info < 0) {
AT_ERROR(name, ": Argument ", -info, " has illegal value");
} else if (info > 0) {
AT_ERROR(name, ": U(", info, ",", info, ") is zero, singular U.");
}
}
// Checks if all the Tensors in a TensorList are of the same dimensions
static inline void checkAllSameDim(TensorList tensors, int64_t dim) {
for (auto &t : tensors) {
AT_CHECK(t.dim() == dim, "Tensor dimension is ", t.dim(), ", expected ", dim, " instead.");
}
}
static inline std::tuple<Tensor,Tensor> _linear_solve_broadcast_args(const Tensor& arg1, const Tensor& arg2) {
linearSolveCheckInputs(arg1, arg2);
// broadcast the batch dimensions of arg1 and arg2.
IntList arg1_batch_sizes(arg1.sizes().data(), arg1.ndimension() - 2);
IntList arg2_batch_sizes(arg2.sizes().data(), arg2.ndimension() - 2);
std::vector<int64_t> expand_batch_portion = infer_size(arg1_batch_sizes, arg2_batch_sizes);
std::vector<int64_t> arg1_expand_size({expand_batch_portion});
arg1_expand_size.insert(arg1_expand_size.end(), { arg1.size(-2), arg1.size(-1) });
std::vector<int64_t> arg2_expand_size({expand_batch_portion});
arg2_expand_size.insert(arg2_expand_size.end(), { arg2.size(-2), arg2.size(-1) });
Tensor arg1_broadcasted = arg1.expand(arg1_expand_size);
Tensor arg2_broadcasted = arg2.expand(arg2_expand_size);
return std::make_tuple(arg1_broadcasted, arg2_broadcasted);
}
}} // namespace at::native