-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathbcd_alg.m
80 lines (64 loc) · 1.37 KB
/
bcd_alg.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
function [x,s,out] = bcd_alg(A,b,kap,para);
[m,n] = size(A);
ns = m/kap;
% Initialize
if(isfield(para, 'MAX_ITER'))
MAX_ITER = para.MAX_ITER;
else
MAX_ITER = 5e3;
end
if(isfield(para, 'TOL'))
ABSTOL = para.TOL;
else
ABSTOL = 1e-10;
end
if(isfield(para, 'x0'))
x = para.x0;
else
x = randn(n,1);
end
if(isfield(para, 's0'))
s = para.s0;
else
s = zeros(ns,1);
end
if(isfield(para, 'rho'))
rho = para.rho;
else
rho = 1;
end
MIN_ITER = 1e3;
phi = 1e-2;
e1 = ones(kap,1);
v = min(A*x - b - kron(s,e1),0);
out.ex = [];out.es = [];
AA = inv(A'*A);
num_stop = 0;
for iter = 1:MAX_ITER
xm1 = x;
sm1 = s;
% for acceleration of the algorithm
if rho<5e5
rho = rho * 1.01;
end
% x-update
x = AA*(A'*(b + kron(s,e1) + v));
% s-update
cs = A*x - b - v;
s = (rho*sum(reshape(cs, kap, m/kap))'+phi*sm1)/(kap*rho+phi);
s(s<sqrt(2/(kap*rho+phi))) = 0;
% v-update
v = min((rho*(A*x - b - kron(s,e1)) + phi*v)/(rho+phi),0);
% iteration gap
% out.ex = [out.ex, norm(x-xm1)/sqrt(n)];
% out.es = [out.es, norm(s-sm1)/sqrt(ns)];
%Check for convergence
if (iter>MIN_ITER & norm(s-sm1)< sqrt(ns)*ABSTOL) & (norm(x-xm1)< sqrt(n)*ABSTOL)
num_stop = num_stop + 1;
if num_stop==3
break;
end
else
num_stop = 0;
end
end