-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathdemo_syn.m
97 lines (76 loc) · 3.66 KB
/
demo_syn.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
clear all; clc;
addpath('src/');
% addpath('C:\gurobi801\win64\matlab\');
solver = 'sedumi'; % solver = 'gurobi' will make gurobi as LP solver
%the EP algorithm using 'gurobi' is several times faster than uisng 'sedumi',
%but for the EP algorithm, uisng 'sedumi' can yield better performance than using 'gurobi'
EPConfig.lpsolver = prepareSolver(solver);
EPConfig.solver = solver;
N = 500; % Number of points
d = 8; % data dimension
sig = 0.1; % inlier variance used to generate Gaussian noise
osig = 1; % outlier vanrance
balanceData = 1; % If balanceData = 1, outliers are evenly distributed on both sides of the hyperplane.
% Otherwise, if balanaceData = 0, outliers are distributed only on positive side of the hyperplane.
inlier_th = 0.1; % Inlier threshold
EPConfig.maxAlpha = 1e10; %safeguard to prevent alpha to go astray
EPConfig.QThresh = 1e-4; % As Q(z) is smaller than QThresh, quit and return the result
EPConfig.alpha = 0.5; % Initial alpha
EPConfig.kappa = 5; % Increment rate
out_ratio = [0,5,10:10:60];
for nr=1:length(out_ratio)
outlierP = out_ratio(nr); % Outlier percentage
for k=1:20
% [outlierP,k];
[A,y,xt] = genRandomLinearData(N, d, sig, osig, outlierP, balanceData);
tic; % L1
[s_l1] = l1_alg(A,y,inlier_th);
mc(1,k) = N - sum(s_l1>0);
runtime(1,k) = toc;
tic; % L1-RD
[s_l1rd] = l1rd_alg(A,y,inlier_th);
mc(2,k) = N - sum(s_l1rd>0);
runtime(2,k) = toc;
tic; % iterativelt reweighted method
[s_irw] = irw_alg(A,y,inlier_th,20);
mc(3,k) = N - sum(s_irw>0);
runtime(3,k) = toc;
tic; % ADMM
[s_adm] = max_con_adm(A,y,inlier_th);
mc(4,k) = N - sum(s_adm>0);
runtime(4,k) = toc;
tic; % BCD
[s_bcd] = max_con_bcd(A,y,inlier_th);
mc(5,k) = N - sum(s_bcd>0);
runtime(5,k) = toc;
%---RANSAC--------------------------------------------------------------------
[ransacTheta, ransacInliers, ransacRuntime ] = linearFit(A, y, inlier_th, 'RANSAC', randn(1,d));
mc(6,k) = ransacInliers;
runtime(6,k) = ransacRuntime;
%---Exact Penalty (EP) with LEAST SQUARE starting point-----------------------
[lsqTheta, lsqInliers, lsqRuntime ] = linearFit(A, y, inlier_th, 'LSQ', randn(1,d), EPConfig);
[~, eplsqInliers, eplsqRuntime] = linearFit(A, y, inlier_th, 'EP', lsqTheta, EPConfig);
mc(7,k) = eplsqInliers;
runtime(7,k) = lsqRuntime+eplsqRuntime;
%---Exact Penalty (EP) with RANSAC starting point-----------------------
[~, eprsInliers, eprsRuntime] = linearFit(A, y, inlier_th, 'EP', ransacTheta, EPConfig);
mc(8,k) = eprsInliers;
runtime(8,k) = ransacRuntime+eprsRuntime;
end
av_mc(:,nr) = mean(mc,2)
av_rt(:,nr) = mean(runtime,2)
end
figure(11);
plot(out_ratio,av_mc(6,:),'g--',out_ratio,av_mc(1,:),'b--o',out_ratio,av_mc(2,:),'b--+',out_ratio,av_mc(3,:),'b--*',...
out_ratio,av_mc(7,:),'g--x',out_ratio,av_mc(8,:),'g--o',...
out_ratio,av_mc(4,:),'r--*',out_ratio,av_mc(5,:),'r--^');
xlabel('Outlier ratio (%)'); grid on;
ylabel('Consensus Size')
legend('RANSAC','L1','L1-RD','IRWLq','EP-LSQ','EP-RS','ADMM','BCD');
figure(2);
semilogy(out_ratio,av_rt(6,:),'g--',out_ratio,av_rt(1,:),'b--o',out_ratio,av_rt(2,:),'b--+',out_ratio,av_rt(3,:),'b--*',...
out_ratio,av_rt(7,:),'g--x',out_ratio,av_rt(8,:),'g--o',...
out_ratio,av_rt(4,:),'r--*',out_ratio,av_rt(5,:),'r--^');
xlabel('Outlier ratio (%)'); grid on;
ylabel('Runtime (seconds)')
legend('RANSAC','L1','L1-RD','IRWLq','EP-LSQ','EP-RS','ADMM','BCD');