Overall pipeline |
||
MVD |
DSNet |
TrackNetv2 |
- MVD (to predict the ball type)
- DSNet (to predict the shot frame number)
- TrackNetv2 (to predict the shuttlecock position, ball height)
- YOLOv8-Detection (to predict the player position)
- YOLOv8-PoseEstimation (to predict the toe position)
- YOLOv8-Classification (to predict the round head, backhand)
-
Clone the code from repository
git clone https://github.com/FanChiMao/Competition-2023-PyTorch-Badminton
-
Install submodule
cd Competition-2023-PyTorch-Badminton git submodule update --init
-
Build the environment
cd Competition-2023-PyTorch-Badminton pip install -r requirements.txt
-
Download the TrackNetv2
git clone https://nol.cs.nctu.edu.tw:234/open-source/TrackNetv2 python utils\predict_process\TrackNet_import.py
-
Download our YOLOv8 trained weights by following commands, or you can directly download from here.
cd trained_weights python download_trained_weights.py
-
Check the configuration path from
./inference.yaml
# Path setting PATH: VIDEO: D:\AICUP\datasets\test\video HIT_CSV: D:\AICUP\datasets\test\predict_csv RESULT: .\predict_result OPENPOSE: .\for_openpose # Pretrained weights path WEIGHTS: PLAYER: D:\AICUP\Competition-2023-PyTorch-Badminton\trained_weights\yolov8s-players_detection_2.pt COURT: D:\AICUP\Competition-2023-PyTorch-Badminton\trained_weights\yolov8s-seg_net_detection.pt NET: D:\AICUP\Competition-2023-PyTorch-Badminton\trained_weights\yolov8s-players_detection.pt ROUNDHEAD: D:\AICUP\Competition-2023-PyTorch-Badminton\trained_weights\yolov8n-cls_roundhead.pt BACKHAND: D:\AICUP\Competition-2023-PyTorch-Badminton\trained_weights\yolov8n-cls_backhand.pt BALLTYPE: D:\AICUP\Competition-2023-PyTorch-Badminton\trained_weights\yolov8s-cls_balltypes.pt START: D:\AICUP\Competition-2023-PyTorch-Badminton\trained_weights\yolov8n-cls_balltypes_start.pt AFTER: D:\AICUP\Competition-2023-PyTorch-Badminton\trained_weights\yolov8n-cls_balltypes_after.pt
-
After setting the configuration, to predict the video input, simply run
python main_predict.py
- https://github.com/ultralytics/ultralytics
- https://github.com/ruiwang2021/mvd
- https://github.com/li-plus/DSNet
- https://nol.cs.nctu.edu.tw:234/open-source/TrackNetv2
- Chi-Mao Fan: [email protected]
- Hong-Ru Shen: [email protected]