-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathrender_sh.py
156 lines (126 loc) · 6.32 KB
/
render_sh.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
#
# Copyright (C) 2023, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use
# under the terms of the LICENSE.md file.
#
# For inquiries contact [email protected]
#
import torch
from scene import Scene
import os
from tqdm import tqdm
from os import makedirs
from gaussian_renderer import render_sh
import torchvision
from utils.general_utils import safe_state
from argparse import ArgumentParser
from arguments import ModelParams, PipelineParams, get_combined_args
from gaussian_renderer import GaussianModelSH
import numpy as np
import matplotlib.cm as cm
def weighted_percentile(x, w, ps, assume_sorted=False):
"""Compute the weighted percentile(s) of a single vector."""
x = x.reshape([-1])
w = w.reshape([-1])
if not assume_sorted:
sortidx = np.argsort(x)
x, w = x[sortidx], w[sortidx]
acc_w = np.cumsum(w)
return np.interp(np.array(ps) * (acc_w[-1] / 100), acc_w, x)
def visualize_cmap(value,
weight,
colormap,
lo=None,
hi=None,
percentile=99.,
curve_fn=lambda x: x,
modulus=None,
matte_background=True):
"""Visualize a 1D image and a 1D weighting according to some colormap.
Args:
value: A 1D image.
weight: A weight map, in [0, 1].
colormap: A colormap function.
lo: The lower bound to use when rendering, if None then use a percentile.
hi: The upper bound to use when rendering, if None then use a percentile.
percentile: What percentile of the value map to crop to when automatically
generating `lo` and `hi`. Depends on `weight` as well as `value'.
curve_fn: A curve function that gets applied to `value`, `lo`, and `hi`
before the rest of visualization. Good choices: x, 1/(x+eps), log(x+eps).
modulus: If not None, mod the normalized value by `modulus`. Use (0, 1]. If
`modulus` is not None, `lo`, `hi` and `percentile` will have no effect.
matte_background: If True, matte the image over a checkerboard.
Returns:
A colormap rendering.
"""
# Identify the values that bound the middle of `value' according to `weight`.
lo_auto, hi_auto = weighted_percentile(
value, weight, [50 - percentile / 2, 50 + percentile / 2])
# If `lo` or `hi` are None, use the automatically-computed bounds above.
eps = np.finfo(np.float32).eps
lo = lo or (lo_auto - eps)
hi = hi or (hi_auto + eps)
# Curve all values.
value, lo, hi = [curve_fn(x) for x in [value, lo, hi]]
# Wrap the values around if requested.
if modulus:
value = np.mod(value, modulus) / modulus
else:
# Otherwise, just scale to [0, 1].
value = np.nan_to_num(
np.clip((value - np.minimum(lo, hi)) / np.abs(hi - lo), 0, 1))
if colormap:
colorized = colormap(value)[:, :, :3]
else:
assert len(value.shape) == 3 and value.shape[-1] == 3
colorized = value
return colorized
depth_curve_fn = lambda x: -np.log(x + np.finfo(np.float32).eps)
def render_set(model_path, name, iteration, views, gaussians, pipeline, background):
render_path = os.path.join(model_path, name, "ours_{}".format(iteration), "renders")
gts_path = os.path.join(model_path, name, "ours_{}".format(iteration), "gt")
depth_path = os.path.join(model_path, name, "ours_{}".format(iteration), "depth")
makedirs(render_path, exist_ok=True)
makedirs(gts_path, exist_ok=True)
makedirs(depth_path, exist_ok=True)
for idx, view in enumerate(tqdm(views, desc="Rendering progress", ascii=True, dynamic_ncols=True)):
render_pkg = render_sh(view, gaussians, pipeline, background)
rendering = render_pkg["render"]
gt = view.original_image[0:3, :, :]
depth = 1.0 - (render_pkg['depth'] - render_pkg['depth'].min()) / (render_pkg['depth'].max() - render_pkg['depth'].min())
torchvision.utils.save_image(rendering, os.path.join(render_path, '{0:05d}'.format(idx) + ".png"))
torchvision.utils.save_image(gt, os.path.join(gts_path, '{0:05d}'.format(idx) + ".png"))
torchvision.utils.save_image(depth, os.path.join(depth_path, '{0:05d}'.format(idx) + ".png"))
torchvision.utils.save_image(render_pkg['alpha'], os.path.join(depth_path, 'aplha_{0:05d}'.format(idx) + ".png"))
depth_est = (1 - depth * render_pkg["alpha"]).squeeze().cpu().numpy()
depth_est = visualize_cmap(depth_est, np.ones_like(depth_est), cm.get_cmap('turbo'), curve_fn=depth_curve_fn).copy()
depth_est = torch.as_tensor(depth_est).permute(2,0,1)
torchvision.utils.save_image(depth_est, os.path.join(depth_path, 'color_{0:05d}'.format(idx) + ".png"))
def render_sets(dataset : ModelParams, iteration : int, pipeline : PipelineParams, skip_train : bool, skip_test : bool):
with torch.no_grad():
gaussians = GaussianModelSH(dataset.sh_degree)
scene = Scene(dataset, gaussians, load_iteration=iteration, shuffle=False)
bg_color = [1,1,1] if dataset.white_background else [0, 0, 0]
background = torch.tensor(bg_color, dtype=torch.float32, device="cuda")
if not skip_train:
render_set(dataset.model_path, "train", scene.loaded_iter, scene.getTrainCameras(), gaussians, pipeline, background)
if not skip_test:
render_set(dataset.model_path, "test", scene.loaded_iter, scene.getTestCameras(), gaussians, pipeline, background)
render_set(dataset.model_path, "eval", scene.loaded_iter, scene.getEvalCameras(), gaussians, pipeline, background)
if __name__ == "__main__":
# Set up command line argument parser
parser = ArgumentParser(description="Testing script parameters")
model = ModelParams(parser, sentinel=True)
pipeline = PipelineParams(parser)
parser.add_argument("--iteration", default=-1, type=int)
parser.add_argument("--skip_train", action="store_true")
parser.add_argument("--skip_test", action="store_true")
parser.add_argument("--quiet", action="store_true")
args = get_combined_args(parser)
print("Rendering " + args.model_path)
# Initialize system state (RNG)
safe_state(args.quiet)
render_sets(model.extract(args), args.iteration, pipeline.extract(args), args.skip_train, args.skip_test)