-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathvegetation_dynamics_lb_pap.py
473 lines (423 loc) · 20.8 KB
/
vegetation_dynamics_lb_pap.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
from landlab import Component
from landlab.utils.decorators import use_file_name_or_kwds
import numpy as np
_VALID_METHODS = set(['Grid'])
def assert_method_is_valid(method):
if method not in _VALID_METHODS:
raise ValueError('%s: Invalid method name' % method)
class Vegetation(Component):
"""
Landlab component that simulates net primary productivity, biomass
and leaf area index at each cell based on inputs of root-zone
average soil moisture.
.. codeauthor:: Sai Nudurupati and Erkan Istanbulluoglu
Construction::
Vegetation(grid, Blive_init=102., Bdead_init=450.,
ETthreshold_up=3.8, ETthreshold_down=6.8, Tdmax=10., w=0.55,
WUE_grass=0.01, LAI_max_grass=2., cb_grass=0.0047, cd_grass=0.009,
ksg_grass=0.012, kdd_grass=0.013, kws_grass=0.02,
WUE_shrub=0.0025, LAI_max_shrub=2., cb_shrub=0.004, cd_shrub=0.01,
ksg_shrub=0.002, kdd_shrub=0.013, kws_shrub=0.02,
WUE_tree=0.0045, LAI_max_tree=4., cb_tree=0.004, cd_tree=0.01,
ksg_tree=0.002, kdd_tree=0.013, kws_tree=0.01,
WUE_bare=0.01, LAI_max_bare=0.01, cb_bare=0.0047, cd_bare=0.009,
ksg_bare=0.012, kdd_bare=0.013, kws_bare=0.02)
Parameters
----------
grid: RasterModelGrid
A grid.
Blive_init: float, optional
Initial value for vegetation__live_biomass. Converted to field.
Bdead_init: float, optional
Initial value for vegetation__dead_biomass. Coverted to field.
ETthreshold_up: float, optional
Potential Evapotranspiration (PET) threshold for
growing season (mm/d).
ETthreshold_down: float, optional
PET threshold for dormant season (mm/d).
Tdmax: float, optional
Constant for dead biomass loss adjustment (mm/d).
w: float, optional
Conversion factor of CO2 to dry biomass (Kg DM/Kg CO2).
WUE: float, optional
Water Use Efficiency - ratio of water used in plant water
lost by the plant through transpiration (KgCO2Kg-1H2O).
LAI_max: float, optional
Maximum leaf area index (m2/m2).
cb: float, optional
Specific leaf area for green/live biomass (m2 leaf g-1 DM).
cd: float, optional
Specific leaf area for dead biomass (m2 leaf g-1 DM).
ksg: float, optional
Senescence coefficient of green/live biomass (d-1).
kdd: float, optional
Decay coefficient of aboveground dead biomass (d-1).
kws: float, optional
Maximum drought induced foliage loss rate (d-1).
Examples
--------
>>> from landlab import RasterModelGrid
>>> from landlab.components import Vegetation
Create a grid on which to simulate vegetation dynamics.
>>> grid = RasterModelGrid((5,4), spacing=(0.2, 0.2))
The grid will need some input data. To check the names of the fields
that provide the input to this component, use the *input_var_names*
class property.
>>> sorted(Vegetation.input_var_names) # doctest: +NORMALIZE_WHITESPACE
['surface__evapotranspiration',
'surface__potential_evapotranspiration_30day_mean',
'surface__potential_evapotranspiration_rate',
'vegetation__plant_functional_type',
'vegetation__water_stress']
>>> sorted(Vegetation.units) # doctest: +NORMALIZE_WHITESPACE
[('surface__evapotranspiration', 'mm'),
('surface__potential_evapotranspiration_30day_mean', 'mm'),
('surface__potential_evapotranspiration_rate', 'mm'),
('vegetation__cover_fraction', 'None'),
('vegetation__dead_biomass', 'g m^-2 d^-1'),
('vegetation__dead_leaf_area_index', 'None'),
('vegetation__live_biomass', 'g m^-2 d^-1'),
('vegetation__live_leaf_area_index', 'None'),
('vegetation__plant_functional_type', 'None'),
('vegetation__water_stress', 'None')]
Provide all the input fields.
>>> grid['cell']['vegetation__plant_functional_type']= (
... np.zeros(grid.number_of_cells, dtype=int))
>>> grid['cell']['surface__evapotranspiration'] = (
... 0.2 * np.ones(grid.number_of_cells))
>>> grid['cell']['surface__potential_evapotranspiration_rate']= np.array([
... 0.25547770, 0.25547770, 0.22110221,
... 0.22110221, 0.24813062, 0.24813062])
>>> grid['cell']['surface__potential_evapotranspiration_30day_mean']= (
... np.array([0.25547770, 0.25547770, 0.22110221,
... 0.22110221, 0.24813062, 0.24813062]))
>>> grid['cell']['vegetation__water_stress'] = (
... 0.01 * np.ones(grid.number_of_cells))
Instantiate the 'Vegetation' component.
>>> Veg = Vegetation(grid)
>>> Veg.grid.number_of_cell_rows
3
>>> Veg.grid.number_of_cell_columns
2
>>> Veg.grid is grid
True
>>> import numpy as np
>>> sorted(Vegetation.output_var_names) # doctest: +NORMALIZE_WHITESPACE
['vegetation__cover_fraction',
'vegetation__dead_biomass',
'vegetation__dead_leaf_area_index',
'vegetation__live_biomass',
'vegetation__live_leaf_area_index']
>>> np.all(grid.at_cell['vegetation__live_leaf_area_index'] == 0.)
True
>>> Veg.update()
>>> np.all(grid.at_cell['vegetation__live_leaf_area_index'] == 0.)
False
"""
_name = 'Vegetation'
_input_var_names = (
'surface__evapotranspiration',
'vegetation__water_stress',
'surface__potential_evapotranspiration_rate',
'surface__potential_evapotranspiration_30day_mean',
'vegetation__plant_functional_type',
)
_output_var_names = (
'vegetation__live_leaf_area_index',
'vegetation__dead_leaf_area_index',
'vegetation__cover_fraction',
'vegetation__live_biomass',
'vegetation__dead_biomass',
)
_var_units = {
'vegetation__live_leaf_area_index': 'None',
'vegetation__dead_leaf_area_index': 'None',
'vegetation__cover_fraction': 'None',
'surface__evapotranspiration': 'mm',
'surface__potential_evapotranspiration_rate': 'mm',
'surface__potential_evapotranspiration_30day_mean': 'mm',
'vegetation__water_stress': 'None',
'vegetation__live_biomass': 'g m^-2 d^-1',
'vegetation__dead_biomass': 'g m^-2 d^-1',
'vegetation__plant_functional_type': 'None',
}
_var_mapping = {
'vegetation__live_leaf_area_index': 'cell',
'vegetation__dead_leaf_area_index': 'cell',
'vegetation__cover_fraction': 'cell',
'surface__evapotranspiration': 'cell',
'surface__potential_evapotranspiration_rate': 'cell',
'surface__potential_evapotranspiration_30day_mean': 'cell',
'vegetation__water_stress': 'cell',
'vegetation__live_biomass': 'cell',
'vegetation__dead_biomass': 'cell',
'vegetation__plant_functional_type': 'cell',
}
_var_doc = {
'vegetation__live_leaf_area_index':
'one-sided green leaf area per unit ground surface area',
'vegetation__dead_leaf_area_index':
'one-sided dead leaf area per unit ground surface area',
'vegetation__cover_fraction':
'fraction of land covered by vegetation',
'surface__evapotranspiration':
'actual sum of evaporation and plant transpiration',
'surface__potential_evapotranspiration_rate':
'potential sum of evaporation and platnt transpiration',
'surface__potential_evapotranspiration_30day_mean':
'30 day mean of surface__potential_evapotranspiration',
'vegetation__water_stress':
'parameter that represents nonlinear effects of water defecit \
on plants',
'vegetation__live_biomass':
'weight of green organic mass per unit area - measured in terms \
of dry matter',
'vegetation__dead_biomass':
'weight of dead organic mass per unit area - measured in terms \
of dry matter',
'vegetation__plant_functional_type':
'classification of plants (int), grass=0, shrub=1, tree=2, \
bare=3, shrub_seedling=4, tree_seedling=5',
}
@use_file_name_or_kwds
def __init__(self, grid, Blive_init=102., Bdead_init=450.,
ETthreshold_up=3.8, ETthreshold_down=6.8, Tdmax=10., w=0.55,
WUE_grass=0.01, LAI_max_grass=2., cb_grass=0.0047,
cd_grass=0.009, ksg_grass=0.012, kdd_grass=0.013,
kws_grass=0.02,
WUE_shrub=0.0025, LAI_max_shrub=2., cb_shrub=0.004,
cd_shrub=0.01, ksg_shrub=0.002, kdd_shrub=0.013,
kws_shrub=0.02,
WUE_tree=0.0045, LAI_max_tree=4., cb_tree=0.004, cd_tree=0.01,
ksg_tree=0.002, kdd_tree=0.013, kws_tree=0.01,
WUE_bare=0.01, LAI_max_bare=0.01, cb_bare=0.0047,
cd_bare=0.009, ksg_bare=0.012, kdd_bare=0.013, kws_bare=0.02,
**kwds):
"""
Parameters
----------
grid: RasterModelGrid
A grid.
Blive_init: float, optional
Initial value for vegetation__live_biomass. Converted to field.
Bdead_init: float, optional
Initial value for vegetation__dead_biomass. Coverted to field.
ETthreshold_up: float, optional
Potential Evapotranspiration (PET) threshold for
growing season (mm/d).
ETthreshold_down: float, optional
PET threshold for dormant season (mm/d).
Tdmax: float, optional
Constant for dead biomass loss adjustment (mm/d).
w: float, optional
Conversion factor of CO2 to dry biomass (Kg DM/Kg CO2).
WUE: float, optional
Water Use Efficiency - ratio of water used in plant water
lost by the plant through transpiration (KgCO2Kg-1H2O).
LAI_max: float, optional
Maximum leaf area index (m2/m2).
cb: float, optional
Specific leaf area for green/live biomass (m2 leaf g-1 DM).
cd: float, optional
Specific leaf area for dead biomass (m2 leaf g-1 DM).
ksg: float, optional
Senescence coefficient of green/live biomass (d-1).
kdd: float, optional
Decay coefficient of aboveground dead biomass (d-1).
kws: float, optional
Maximum drought induced foliage loss rate (d-1).
"""
self._method = kwds.pop('method', 'Grid')
assert_method_is_valid(self._method)
super(Vegetation, self).__init__(grid)
self.initialize(Blive_init=Blive_init, Bdead_init=Bdead_init,
ETthreshold_up=ETthreshold_up,
ETthreshold_down=ETthreshold_down, Tdmax=Tdmax, w=w,
WUE_grass=WUE_grass, LAI_max_grass=LAI_max_grass,
cb_grass=cb_grass, cd_grass=cd_grass,
ksg_grass=ksg_grass, kdd_grass=kdd_grass,
kws_grass=kws_grass, WUE_shrub=WUE_shrub,
LAI_max_shrub=LAI_max_shrub, cb_shrub=cb_shrub,
cd_shrub=cd_shrub, ksg_shrub=ksg_shrub,
kdd_shrub=kdd_shrub, kws_shrub=kws_shrub,
WUE_tree=WUE_tree, LAI_max_tree=LAI_max_tree,
cb_tree=cb_tree, cd_tree=cd_tree, ksg_tree=ksg_tree,
kdd_tree=kdd_tree, kws_tree=kws_tree,
WUE_bare=WUE_bare, LAI_max_bare=LAI_max_bare,
cb_bare=cb_bare, cd_bare=cd_bare, ksg_bare=ksg_bare,
kdd_bare=kdd_bare, kws_bare=kws_bare, **kwds)
for name in self._input_var_names:
if name not in self.grid.at_cell:
self.grid.add_zeros('cell', name, units=self._var_units[name])
for name in self._output_var_names:
if name not in self.grid.at_cell:
self.grid.add_zeros('cell', name, units=self._var_units[name])
self._cell_values = self.grid['cell']
self._Blive_ini = self._Blive_init * np.ones(self.grid.number_of_cells)
self._Bdead_ini = self._Bdead_init * np.ones(self.grid.number_of_cells)
def initialize(self, Blive_init=102., Bdead_init=450., ETthreshold_up=3.8,
ETthreshold_down=6.8, Tdmax=10., w=0.55,
WUE_grass=0.01, LAI_max_grass=2., cb_grass=0.0047,
cd_grass=0.009, ksg_grass=0.012, kdd_grass=0.013,
kws_grass=0.02,
WUE_shrub=0.0025, LAI_max_shrub=2., cb_shrub=0.004,
cd_shrub=0.01, ksg_shrub=0.002, kdd_shrub=0.013,
kws_shrub=0.02,
WUE_tree=0.0045, LAI_max_tree=4., cb_tree=0.004,
cd_tree=0.01, ksg_tree=0.002, kdd_tree=0.013, kws_tree=0.01,
WUE_bare=0.01, LAI_max_bare=0.01, cb_bare=0.0047,
cd_bare=0.009, ksg_bare=0.012, kdd_bare=0.013,
kws_bare=0.02, **kwds):
# GRASS = 0; SHRUB = 1; TREE = 2; BARE = 3;
# SHRUBSEEDLING = 4; TREESEEDLING = 5
"""
Parameters
----------
grid: RasterModelGrid
A grid.
Blive_init: float, optional
Initial value for vegetation__live_biomass. Converted to field.
Bdead_init: float, optional
Initial value for vegetation__dead_biomass. Coverted to field.
ETthreshold_up: float, optional
Potential Evapotranspiration (PET) threshold for
growing season (mm/d).
ETthreshold_down: float, optional
PET threshold for dormant season (mm/d).
Tdmax: float, optional
Constant for dead biomass loss adjustment (mm/d).
w: float, optional
Conversion factor of CO2 to dry biomass (Kg DM/Kg CO2).
WUE: float, optional
Water Use Efficiency - ratio of water used in plant water
lost by the plant through transpiration (KgCO2Kg-1H2O).
LAI_max: float, optional
Maximum leaf area index (m2/m2).
cb: float, optional
Specific leaf area for green/live biomass (m2 leaf g-1 DM).
cd: float, optional
Specific leaf area for dead biomass (m2 leaf g-1 DM).
ksg: float, optional
Senescence coefficient of green/live biomass (d-1).
kdd: float, optional
Decay coefficient of aboveground dead biomass (d-1).
kws: float, optional
Maximum drought induced foliage loss rate (d-1).
"""
self._vegtype = self.grid['cell']['vegetation__plant_functional_type']
self._WUE = np.choose(self._vegtype, [
WUE_grass, WUE_shrub, WUE_tree, WUE_bare, WUE_shrub, WUE_tree])
# Water Use Efficiency KgCO2kg-1H2O
self._LAI_max = np.choose(self._vegtype, [
LAI_max_grass, LAI_max_shrub, LAI_max_tree,
LAI_max_bare, LAI_max_shrub, LAI_max_tree])
# Maximum leaf area index (m2/m2)
self._cb = np.choose(self._vegtype, [
cb_grass, cb_shrub, cb_tree, cb_bare, cb_shrub, cb_tree])
# Specific leaf area for green/live biomass (m2 leaf g-1 DM)
self._cd = np.choose(self._vegtype, [
cd_grass, cd_shrub, cd_tree, cd_bare, cd_shrub, cd_tree])
# Specific leaf area for dead biomass (m2 leaf g-1 DM)
self._ksg = np.choose(self._vegtype, [
ksg_grass, ksg_shrub, ksg_tree, ksg_bare, ksg_shrub, ksg_tree])
# Senescence coefficient of green/live biomass (d-1)
self._kdd = np.choose(self._vegtype, [
kdd_grass, kdd_shrub, kdd_tree, kdd_bare, kdd_shrub, kdd_tree])
# Decay coefficient of aboveground dead biomass (d-1)
self._kws = np.choose(self._vegtype, [
kws_grass, kws_shrub, kws_tree, kws_bare, kws_shrub, kws_tree])
# Maximum drought induced foliage loss rates (d-1)
self._Blive_init = Blive_init
self._Bdead_init = Bdead_init
self._ETthresholdup = ETthreshold_up # Growth threshold (mm/d)
self._ETthresholddown = ETthreshold_down # Dormancy threshold (mm/d)
self._Tdmax = Tdmax # Constant for dead biomass loss adjustment
self._w = w # Conversion factor of CO2 to dry biomass
self._Blive_ini = self._Blive_init * np.ones(self.grid.number_of_cells)
self._Bdead_ini = self._Bdead_init * np.ones(self.grid.number_of_cells)
def update(self, PETthreshold_switch=0, Tb=24., Tr=0.01, **kwds):
"""
Update fields with current loading conditions.
Parameters
----------
Tr: float, optional
Storm duration (hours).
Tb: float, optional
Inter-storm duration (hours).
"""
PETthreshold_ = PETthreshold_switch
PET = self._cell_values['surface__potential_evapotranspiration_rate']
PET30_ = self._cell_values[
'surface__potential_evapotranspiration_30day_mean']
ActualET = self._cell_values['surface__evapotranspiration']
Water_stress = self._cell_values['vegetation__water_stress']
self._LAIlive = self._cell_values['vegetation__live_leaf_area_index']
self._LAIdead = self._cell_values['vegetation__dead_leaf_area_index']
self._Blive = self._cell_values['vegetation__live_biomass']
self._Bdead = self._cell_values['vegetation__dead_biomass']
self._VegCov = self._cell_values['vegetation__cover_fraction']
if PETthreshold_ == 1:
PETthreshold = self._ETthresholdup
else:
PETthreshold = self._ETthresholddown
for cell in range(0, self.grid.number_of_cells):
WUE = self._WUE[cell]
LAImax = self._LAI_max[cell]
cb = self._cb[cell]
cd = self._cd[cell]
ksg = self._ksg[cell]
kdd = self._kdd[cell]
kws = self._kws[cell]
# ETdmax = self._ETdmax[cell]
LAIlive = min(cb*self._Blive_ini[cell], LAImax)
LAIdead = min(cd * self._Bdead_ini[cell], (LAImax -
LAIlive))
NPP = max((ActualET[cell]/(Tb+Tr)) *
WUE*24.*self._w*1000, 0.001)
if self._vegtype[cell] == 0:
if PET30_[cell] > PETthreshold:
# Growing Season
Bmax = (LAImax - LAIdead)/cb
Yconst = (1/((1/Bmax)+(((kws*Water_stress[cell]) +
ksg)/NPP)))
Blive = ((self._Blive_ini[cell] - Yconst) *
np.exp(-(NPP/Yconst) * ((Tb+Tr)/24.)) + Yconst)
Bdead = ((self._Bdead_ini[cell] + (Blive - max(Blive *
np.exp(-1 * ksg * Tb/24.), 0.00001))) *
np.exp(-1 * kdd *
min(PET[cell]/self._Tdmax, 1.) * Tb/24.))
else: # Senescense
Blive = max(self._Blive_ini[cell] * np.exp((-2) * ksg *
Tb/24.), 1)
Bdead = max((self._Bdead_ini[cell]+(self._Blive_ini[cell] -
(max(self._Blive_ini[cell]*np.exp((-2) *
ksg*Tb/24.), 0.000001))))*np.exp((-1)*kdd *
min(PET[cell]/self._Tdmax, 1.) * Tb/24.), 0.)
elif self._vegtype[cell] == 3:
Blive = 0.
Bdead = 0.
else:
Bmax = LAImax/cb
Yconst = (1./((1./Bmax)+(((kws*Water_stress[cell]) +
ksg)/NPP)))
Blive = ((self._Blive_ini[cell] - Yconst) *
np.exp(-(NPP/Yconst) * ((Tb+Tr)/24.)) + Yconst)
Bdead = ((self._Bdead_ini[cell] + (Blive - max(Blive *
np.exp(-ksg * Tb/24.), 0.00001))) *
np.exp(-kdd * min(PET[cell]/self._Tdmax, 1.) *
Tb/24.))
LAIlive = min(cb * (Blive + self._Blive_ini[cell])/2., LAImax)
LAIdead = min(cd * (Bdead + self._Bdead_ini[cell])/2.,
(LAImax - LAIlive))
if self._vegtype[cell] == 0:
Vt = 1. - np.exp(-0.75 * (LAIlive + LAIdead))
else:
# Vt = 1 - np.exp(-0.75 * LAIlive)
Vt = 1.
self._LAIlive[cell] = LAIlive
self._LAIdead[cell] = LAIdead
self._VegCov[cell] = Vt
self._Blive[cell] = Blive
self._Bdead[cell] = Bdead
self._Blive_ini = self._Blive
self._Bdead_ini = self._Bdead