-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathlandslide_probability_20191202.py
946 lines (823 loc) · 43.2 KB
/
landslide_probability_20191202.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
#!/usr/env/python
print('You are not going crazy...')
"""Landlab component that simulates landslide probability of failure as well
as mean relative wetness and probability of saturation.
Relative wetness and factor-of-safety are based on the infinite slope
stability model driven by topographic and soils inputs and recharge provided
by user as inputs to the component. For each node, component simulates mean
relative wetness as well as the probability of saturation based on Monte Carlo
simulation of relative wetness where the probability is the number of
iterations with relative wetness >= 1.0 divided by the number of iterations.
Probability of failure for each node is also simulated in the Monte Carlo
simulation as the number of iterations with factor-of-safety <= 1.0
divided by the number of iterations.
.. codeauthor:: R.Strauch, E.Istanbulluoglu, & S.S.Nudurupati
University of Washington
Ref 1: Strauch et al., (2018) "A hydroclimatological approach to predicting regional landslide probability using Landlab", Earth Surf. Dynam., 6, 1-26 .
Ref 2: 'The Landlab LandslideProbability Component User Manual'
Created on Thu Aug 20, 2015
Last edit June 7, 2017
.. codeauthor:: R.Strauch, C.Bandaragoda
Seattle City Light, University of Washington
Ref 3: Strauch et al., (2020) "Slippery future
Ref 4: Strauch, R., C. Raymond, C. Bandaragoda, N. Cristea (2019). Landslide Hazard Modeling in the Skagit Basin, HydroShare, http://www.hydroshare.org/resource/70d746c7da584ae6bd2f88deb5a4c188
Landslide Component Changes: Add depth to water table to optional input, alternative to recharge.
Created on May 7, 2019
Last edit Oct 22, 2019
"""
# %% Import Libraries
from landlab import Component
from landlab.utils.decorators import use_file_name_or_kwds
import numpy as np
import scipy.constants
from scipy import interpolate
from statsmodels.distributions.empirical_distribution import ECDF
import copy
import pandas as pd
# %% Instantiate Object
class LandslideProbability(Component):
"""
Landlab component designed to calculate probability of failure at
each grid node based on the infinite slope stability model
stability index (Factor of Safety).
The driving force for failure is provided by the user in the form of
groundwater recharge; four options for providing recharge are supported.
The model uses topographic and soil characteristics provided as input
by the user.
The main method of the LandslideProbability class is
calculate_landslide_probability(), which calculates the mean soil relative
wetness, probability of soil saturation, and probability of failure at
each node based on a Monte Carlo simulation.
Construction::
Option 1 - Uniform recharge
LandslideProbability(grid, number_of_iterations=250,
groundwater__recharge_distribution='uniform',
groundwater__recharge_min_value=5.,
groundwater__recharge_max_value=121.)
Option 2 - Lognormal recharge
LandslideProbability(grid, number_of_iterations=250,
groundwater__recharge_distribution='lognormal',
groundwater__recharge_mean=30.,
groundwater__recharge_standard_deviation=0.25)
Option 3 - Lognormal_spatial recharge
LandslideProbability(grid, number_of_iterations=250,
groundwater__recharge_distribution='lognormal_spatial',
groundwater__recharge_mean=np.random.randint(20, 120, grid_size),
groundwater__recharge_standard_deviation=np.random.rand(grid_size))
Option 4 - Data_driven_spatial recharge
LandslideProbability(grid, number_of_iterations=250,
groundwater__recharge_distribution='data_driven_spatial',
groundwater__recharge_HSD_inputs=[HSD_dict, HSD_id_dict,
fract_dict])
Option 5 - Uniform depth
LandslideProbability(grid, number_of_iterations=250,
groundwater__depth_distribution='uniform',
groundwater__depth_min_value=0., (EDIT)
groundwater__depth_max_value=2.)
Option 6 - Lognormal recharge
LandslideProbability(grid, number_of_iterations=250,
groundwater__depth_distribution='lognormal',
groundwater__depth_mean=0.5.,
groundwater__depth_standard_deviation=0.1)
Option 7 - Lognormal_spatial recharge
LandslideProbability(grid, number_of_iterations=250,
groundwater__depth_distribution='lognormal_spatial',
groundwater__depth_mean=np.random.randint(0, 2, grid_size),
groundwater__depth_standard_deviation=np.random.rand(grid_size))
Option 8 - Data_driven_spatial depth to water
LandslideProbability(grid, number_of_iterations=250,
groundwater__depth_distribution='data_driven_spatial',
groundwater__depth_HSD_inputs=[HSD_dict])
Parameters
----------
grid: RasterModelGrid
A raster grid.
number_of_iterations: int, optional
Number of iterations to run Monte Carlo simulation (default=250).
groundwater__recharge_distribution: str, optional
single word indicating recharge distribution, either 'uniform',
'lognormal', 'lognormal_spatial,' or 'data_driven_spatial'.
(default='uniform')
groundwater__recharge_min_value: float, optional (mm/d)
minimum groundwater recharge for 'uniform' (default=20.)
groundwater__recharge_max_value: float, optional (mm/d)
maximum groundwater recharge for 'uniform' (default=120.)
groundwater__recharge_mean: float, optional (mm/d)
mean grounwater recharge for 'lognormal'
and 'lognormal_spatial' (default=None)
groundwater__recharge_standard_deviation: float, optional (mm/d)
standard deviation of grounwater recharge for 'lognormal'
and 'lognormal_spatial' (default=None)
groundwater__recharge_HSD_inputs: list, optional
list of 3 dictionaries in order (default=[]) - HSD_dict {Hydrologic
Source Domain (HSD) keys: recharge numpy array values}, {node IDs keys:
list of HSD_Id values}, HSD_fractions {node IDS keys: list of
HSD fractions values} (none) - for more information refer to
Ref 1 & Ref 2 mentioned above, as this set of inputs require
rigorous pre-processing of data.
groundwater__depth_distribution: str, optional
single word indicating groundwater depth distribution, either 'uniform',
'lognormal', 'lognormal_spatial,' or 'data_driven_spatial'.
(default='uniform')
groundwater__depth_min_value: float, optional (m)
minimum groundwater depth for 'uniform' (default=0.)
groundwater__depth_max_value: float, optional (m)
maximum groundwater depth for 'uniform' (default=2.)
groundwater__depth_mean: float, optional (m)
mean groundwater depth for 'lognormal'
and 'lognormal_spatial' (default=None)
groundwater__depth_standard_deviation: float, optional (m)
standard deviation of grounwater depth for 'lognormal'
and 'lognormal_spatial' (default=None)
groundwater__depth_HSD_inputs: list, optional
list of 3 dictionaries in order (default=[]) - HSD_dict {node IDs keys:depth numpy array values}
g: float, optional (m/sec^2)
acceleration due to gravity.
seed: int, optional
seed for random number generation. if seed is assigned any value
other than the default value of zero, it will create different
sequence. To create a certain sequence repititively, use the same
value as input for seed.
Examples
----------
>>> from landlab import RasterModelGrid
>>> from landlab.components.landslides import LandslideProbability
>>> import numpy as np
Create a grid on which to calculate landslide probability.
>>> grid = RasterModelGrid((5, 4), spacing=(0.2, 0.2))
Check the number of core nodes.
>>> grid.number_of_core_nodes
6
The grid will need some input data. To check the names of the fields
that provide the input to this component, use the *input_var_names*
class property.
>>> sorted(LandslideProbability.input_var_names) # doctest: +NORMALIZE_WHITESPACE
['soil__density',
'soil__internal_friction_angle',
'soil__maximum_total_cohesion',
'soil__minimum_total_cohesion',
'soil__mode_total_cohesion',
'soil__saturated_hydraulic_conductivity',
'soil__thickness',
'soil__transmissivity',
'topographic__slope',
'topographic__specific_contributing_area']
Check the units for the fields.
>>> LandslideProbability.var_units('topographic__specific_contributing_area')
'm'
Create an input field.
>>> grid.at_node['topographic__slope'] = np.random.rand(grid.number_of_nodes)
If you are not sure about one of the input or output variables, you can
get help for specific variables.
>>> LandslideProbability.var_help('soil__transmissivity') # doctest: +NORMALIZE_WHITESPACE
name: soil__transmissivity
description:
mode rate of water transmitted through a unit width of saturated
soil - either provided or calculated with Ksat and soil depth
units: m2/day
at: node
intent: in
Additional required fields for component.
>>> scatter_dat = np.random.randint(1, 10, grid.number_of_nodes)
>>> grid.at_node['topographic__specific_contributing_area'] = np.sort(
... np.random.randint(30, 900, grid.number_of_nodes))
>>> grid.at_node['soil__transmissivity'] = np.sort(
... np.random.randint(5, 20, grid.number_of_nodes), -1)
>>> grid.at_node['soil__saturated_hydraulic_conductivity'] = np.sort(
... np.random.randint(2, 10, grid.number_of_nodes), -1)
>>> grid.at_node['soil__mode_total_cohesion'] = np.sort(
... np.random.randint(30, 900, grid.number_of_nodes))
>>> grid.at_node['soil__minimum_total_cohesion'] = (
... grid.at_node['soil__mode_total_cohesion'] - scatter_dat)
>>> grid.at_node['soil__maximum_total_cohesion'] = (
... grid.at_node['soil__mode_total_cohesion'] + scatter_dat)
>>> grid.at_node['soil__internal_friction_angle'] = np.sort(
... np.random.randint(26, 40, grid.number_of_nodes))
>>> grid.at_node['soil__thickness'] = np.sort(
... np.random.randint(1, 3, grid.number_of_nodes))
>>> grid.at_node['soil__density'] = (2000. * np.ones(grid.number_of_nodes))
Instantiate the 'LandslideProbability' component to work on this grid,
and run it.
>>> ls_prob = LandslideProbability(grid)
>>> np.allclose(grid.at_node['landslide__probability_of_failure'], 0.)
True
Run the *calculate_landslide_probability* method to update output
variables with grid
>>> ls_prob.calculate_landslide_probability()
Check the output variable names.
>>> sorted(ls_prob.output_var_names) # doctest: +NORMALIZE_WHITESPACE
['landslide__probability_of_failure',
'soil__mean_relative_wetness',
'soil__mean_watertable_depth',
'soil__probability_of_saturation']
Check the output from the component, including array at one node.
>>> np.allclose(grid.at_node['landslide__probability_of_failure'], 0.)
False
>>> core_nodes = ls_prob.grid.core_nodes
"""
# component name
_name = 'Landslide Probability'
__version__ = '2.0'
# component requires these values to do its calculation, get from driver
_input_var_names = (
'topographic__specific_contributing_area',
'topographic__slope',
'soil__transmissivity',
'soil__saturated_hydraulic_conductivity',
'soil__mode_total_cohesion',
'soil__minimum_total_cohesion',
'soil__maximum_total_cohesion',
'soil__internal_friction_angle',
'soil__density',
'soil__thickness',
)
# component creates these output values
_output_var_names = (
'landslide__probability_of_failure',
'soil__mean_relative_wetness',
'soil__mean_watertable_depth',
'soil__probability_of_saturation',
)
# units for each parameter and output
_var_units = {
'topographic__specific_contributing_area': 'm',
'topographic__slope': 'tan theta',
'soil__transmissivity': 'm2/day',
'soil__saturated_hydraulic_conductivity': 'm/day',
'soil__mode_total_cohesion': 'Pa or kg/m-s2',
'soil__minimum_total_cohesion': 'Pa or kg/m-s2',
'soil__maximum_total_cohesion': 'Pa or kg/m-s2',
'soil__internal_friction_angle': 'degrees',
'soil__density': 'kg/m3',
'soil__thickness': 'm',
'soil__mean_relative_wetness': 'None',
'landslide__probability_of_failure': 'None',
'soil__probability_of_saturation': 'None',
'soil__depth_to_groundwater': 'm',
'soil__mean_watertable_depth': 'm',
}
# grid centering of each field and variable
_var_mapping = {
'topographic__specific_contributing_area': 'node',
'topographic__slope': 'node',
'soil__transmissivity': 'node',
'soil__saturated_hydraulic_conductivity': 'node',
'soil__mode_total_cohesion': 'node',
'soil__minimum_total_cohesion': 'node',
'soil__maximum_total_cohesion': 'node',
'soil__internal_friction_angle': 'node',
'soil__density': 'node',
'soil__thickness': 'node',
'soil__mean_relative_wetness': 'node',
'landslide__probability_of_failure': 'node',
'soil__probability_of_saturation': 'node',
'soil__depth_to_groundwater': 'node',
'soil__mean_watertable_depth': 'node',
}
# short description of each field
_var_doc = {
'topographic__specific_contributing_area':
('specific contributing (upslope area/cell face )' +
' that drains to node'),
'topographic__slope':
'slope of surface at node represented by tan theta',
'soil__transmissivity':
('mode rate of water transmitted' +
' through a unit width of saturated soil - ' +
'either provided or calculated with Ksat ' +
'and soil depth'),
'soil__saturated_hydraulic_conductivity':
('mode rate of water transmitted' +
' through soil - provided if transmissivity ' +
'is NOT provided to calculate tranmissivity ' +
' with soil depth'),
'soil__mode_total_cohesion':
'mode of combined root and soil cohesion at node',
'soil__minimum_total_cohesion':
'minimum of combined root and soil cohesion at node',
'soil__maximum_total_cohesion':
'maximum of combined root and soil cohesion at node',
'soil__internal_friction_angle':
('critical angle just before failure' +
' due to friction between particles'),
'soil__density': 'wet bulk density of soil',
'soil__thickness': 'soil depth to restrictive layer',
'soil__mean_relative_wetness':
('Indicator of soil wetness;' +
' relative depth perched water table' +
' within the soil layer'),
'landslide__probability_of_failure':
('number of times FS is <=1 out of number of' +
' iterations user selected'),
'soil__probability_of_saturation':
('number of times relative wetness is >=1 out of' +
' number of iterations user selected'),
'soil__mean_watertable_depth':
('mean distance to groundwater table from distribution' +
' of depths to groundwater or saturated soils'),
}
# Run Component
@use_file_name_or_kwds
def __init__(self, grid, number_of_iterations=250,
groundwater__recharge_distribution=None,
groundwater__recharge_min_value=20.,
groundwater__recharge_max_value=120.,
groundwater__recharge_mean=None,
groundwater__recharge_standard_deviation=None,
groundwater__recharge_HSD_inputs=[],
groundwater__depth_distribution=None,
groundwater__depth_min_value=0.,
groundwater__depth_max_value=3.,
groundwater__depth_mean=None,
groundwater__depth_standard_deviation=None,
groundwater__depth_HSD_inputs=[],
seed=0, **kwds):
"""
Parameters
----------
grid: RasterModelGrid
A raster grid.
number_of_iterations: int, optional
Number of iterations to run Monte Carlo simulation (default=250).
groundwater__recharge_distribution: str, optional
single word indicating recharge distribution, either 'uniform',
'lognormal', 'lognormal_spatial,' or 'data_driven_spatial'.
(default=None)
groundwater__recharge_min_value: float, optional (mm/d)
minium groundwater recharge for 'uniform' (default=20.)
groundwater__recharge_max_value: float, optional (mm/d)
maximum groundwater recharge for 'uniform' (default=120.)
groundwater__recharge_mean: float, optional (mm/d)
mean groundwater recharge for 'lognormal'
and 'lognormal_spatial' (default=None)
groundwater__recharge_standard_deviation: float, optional (mm/d)
standard deviation of groundwater recharge for 'lognormal'
and 'lognormal_spatial' (default=None)
groundwater__recharge_HSD_inputs: list, optional
list of 3 dictionaries in order (default=[]) - HSD_dict
{Hydrologic Source Domain (HSD) keys: recharge numpy array values},
{node IDs keys: list of HSD_Id values}, HSD_fractions
{node IDS keys: list of HSD fractions values} (none) - for more
information refer to Ref 1 & Ref 2 mentioned above, as this set of
inputs require rigorous pre-processing of data.
groundwater__depth_distribution: str, optional
single word indicating depth to water table distribution, either
'uniform', 'lognormal', 'lognormal_spatial,' or
'data_driven_spatial'.
(default=None)
groundwater__depth_min_value: float, optional (m)
minium groundwater depth to water table for 'uniform' (default=0.)
groundwater__depth_max_value: float, optional (m)
maximum groundwater depth for 'uniform' (default=2.)
groundwater__depth_mean: float, optional (m)
mean groundwater depth to water table for 'lognormal'
and 'lognormal_spatial' (default=None)
groundwater__depth_standard_deviation: float, optional (m)
standard deviation of groundwater depth to water table for
'lognormal' and 'lognormal_spatial' (default=None)
groundwater__depth_HSD_inputs: list, optional
list of 3 dictionaries in order (default=[]) - HSD_dict
{Hydrologic Source Domain (HSD = node) keys: groundwater depth distribution numpy array values}
g: float, optional (m/sec^2)
acceleration due to gravity.
seed: int, optional
seed for random number generation. if seed is assigned any value
other than the default value of zero, it will create different
sequence. To create a certain sequence repititively, use the same
value as input for seed.
"""
# Initialize seeded random number generation
self._seed_generator(seed)
super(LandslideProbability, self).__init__(grid)
print('Input read for groundwater__recharge_distribution')
print(groundwater__recharge_distribution)
print('Input read for groundwater__depth_distribution')
print(groundwater__depth_distribution)
# Store grid and parameters and do unit conversions
self.n = int(number_of_iterations)
self._g = kwds.get('g', scipy.constants.g)
self.groundwater__recharge_distribution = (
groundwater__recharge_distribution)
self.groundwater__depth_distribution = (
groundwater__depth_distribution)
# Following code will deal with the input distribution and associated
# parameters
# Recharge Uniform distribution
if self.groundwater__recharge_distribution == 'uniform':
self._recharge_min = groundwater__recharge_min_value
self._recharge_max = groundwater__recharge_max_value
self._Re = np.random.uniform(self._recharge_min, self._recharge_max,
size=self.n)
self._Re /= 1000. # Convert mm to m
# Recharge Lognormal Distribution - Uniform in space
elif self.groundwater__recharge_distribution == 'lognormal':
assert (groundwater__recharge_mean != None), (
'Input mean of the distribution!')
assert (groundwater__recharge_standard_deviation != None), (
'Input standard deviation of the distribution!')
self._recharge_mean = groundwater__recharge_mean
self._recharge_stdev = groundwater__recharge_standard_deviation
self._mu_lognormal = np.log((self._recharge_mean**2)/np.sqrt(
self._recharge_stdev**2 + self._recharge_mean**2))
self._sigma_lognormal = np.sqrt(np.log((self._recharge_stdev**2)/(
self._recharge_mean**2)+1))
self._Re = np.random.lognormal(self._mu_lognormal,
self._sigma_lognormal, self.n)
self._Re /= 1000. # Convert mm to m
# Recharge Lognormal Distribution - Variable in space
elif self.groundwater__recharge_distribution == 'lognormal_spatial':
assert (groundwater__recharge_mean.shape[0] == (
self.grid.number_of_nodes)), (
'Input array should be of the length of grid.number_of_nodes!')
assert (groundwater__recharge_standard_deviation.shape[0] == (
self.grid.number_of_nodes)), (
'Input array should be of the length of grid.number_of_nodes!')
self._recharge_mean = groundwater__recharge_mean
self._recharge_stdev = groundwater__recharge_standard_deviation
# Recharge Custom HSD inputs - Hydrologic Source Domain -> Model Domain
elif self.groundwater__recharge_distribution == 'data_driven_spatial':
self._HSD_dict = groundwater__recharge_HSD_inputs[0]
self._HSD_id_dict = groundwater__recharge_HSD_inputs[1]
self._fract_dict = groundwater__recharge_HSD_inputs[2]
self._interpolate_HSD_dict()
# Depth to water table - Uniform distribution
if self.groundwater__depth_distribution == 'uniform':
self._depth_min = groundwater__depth_min_value
self._depth_max = groundwater__depth_max_value
# Test printing 2019/11/04
print(self._depth_max)
print(self._depth_min)
self._De = np.random.uniform(self._depth_min, self._depth_max,
size=self.n)
print('Depth to Water Table Distribution')
print(self._De)
print('Mean Depth to Water Table')
print(np.mean(self._De))
# Depth to water table - Lognormal Distribution - Uniform in space
elif self.groundwater__depth_distribution == 'lognormal':
assert (groundwater__depth_mean != None), (
'Input mean of the distribution!')
assert (groundwater__depth_standard_deviation != None), (
'Input standard deviation of the distribution!')
self._depth_mean = groundwater__depth_mean
self._depth_stdev = groundwater__depth_standard_deviation
self._mu_lognormal = np.log((self._depth_mean**2)/np.sqrt(
self._depth_stdev**2 + self._depth_mean**2))
self._sigma_lognormal = np.sqrt(np.log((self._depth_stdev**2)/(
self._depth_mean**2)+1))
self._De = np.random.lognormal(self._mu_lognormal,
self._sigma_lognormal, self.n)
# Depth to water table - Lognormal Distribution - Variable in space
elif self.groundwater__depth_distribution == 'lognormal_spatial':
assert (groundwater__depth_mean.shape[0] == (
self.grid.number_of_nodes)), (
'Input array should be of the length of grid.number_of_nodes!')
assert (groundwater__depth_standard_deviation.shape[0] == (
self.grid.number_of_nodes)), (
'Input array should be of the length of grid.number_of_nodes!')
self._depth_mean = groundwater__depth_mean
self._depth_stdev = groundwater__depth_standard_deviation
# Depth to water table Custom HSD inputs - Hydrologic Source Domain
# -> Model Domain
elif self.groundwater__depth_distribution == 'data_driven_spatial':
self._HSD_dict = groundwater__depth_HSD_inputs[0]
# Check if all input fields are initialized
for name in self._input_var_names:
if name not in self.grid.at_node:
self.grid.add_zeros(name, at=self._var_mapping[name],
units=self._var_units[name])
# Check if all output fields are initialized
for name in self._output_var_names:
if name not in self.grid.at_node:
self.grid.add_zeros(name, at=self._var_mapping[name],
units=self._var_units[name])
# Create a switch to imply whether Ksat is provided.
if np.all(
self.grid.at_node['soil__saturated_hydraulic_conductivity'] == 0):
self.Ksat_provided = 0 # False
else:
self.Ksat_provided = 1 # True
# Create a switch to imply whether min/max cohesion is provided.
if np.all(
self.grid.at_node['soil__minimum_total_cohesion'] == 0):
self.Cmin_provided = 0 # False
else:
self.Cmin_provided = 1 # True
self._nodal_values = self.grid.at_node
# Raise an error if no grid provided
if self.grid is None:
raise ValueError('You must now provide an existing grid!')
def calculate_factor_of_safety(self, i):
"""
Method calculates factor-of-safety stability index by using
node specific parameters, creating distributions of these parameters,
and calculating the index by sampling these distributions 'n' times.
The index is calculated from the 'infinite slope stabilty
factor-of-safety equation' in the format of Pack RT, Tarboton DG,
and Goodwin CN (1998),The SINMAP approach to terrain stability mapping.
Parameters
----------
i: int
index of core node ID.
"""
# generate distributions to sample from to provide input parameters
# currently triangle distribution using mode, min, & max
self._a = self.grid.at_node[
'topographic__specific_contributing_area'][i]
self._theta = self.grid.at_node['topographic__slope'][i]
self._Tmode = self.grid.at_node['soil__transmissivity'][i]
self._Ksatmode = self.grid.at_node[
'soil__saturated_hydraulic_conductivity'][i]
self._Cmode = self.grid.at_node['soil__mode_total_cohesion'][i]
self._Cmin = self.grid.at_node['soil__minimum_total_cohesion'][i]
self._Cmax = self.grid.at_node['soil__maximum_total_cohesion'][i]
self._phi_mode = self.grid.at_node['soil__internal_friction_angle'][i]
self._rho = self.grid.at_node['soil__density'][i]
self._hs_mode = self.grid.at_node['soil__thickness'][i]
if self.groundwater__recharge_distribution == 'data_driven_spatial':
self._calculate_HSD_recharge(i)
self._Re /= 1000. # mm->m
elif self.groundwater__recharge_distribution == 'lognormal_spatial':
mu_lognormal = np.log((self._recharge_mean[i]**2)/np.sqrt(
self._recharge_stdev[i]**2 + self._recharge_mean[i]**2))
sigma_lognormal = np.sqrt(np.log((self._recharge_stdev[i]**2)/(
self._recharge_mean[i]**2)+1))
self._Re = np.random.lognormal(mu_lognormal,
sigma_lognormal, self.n)
self._Re /= 1000. # Convert mm to m
# Depth to water table distribution based on distribution type
if self.groundwater__depth_distribution == 'data_driven_spatial':
self._calculate_HSD_groundwater_depth(i)
print('i')
print(i)
print('self._HSD_dict')
print(self._HSD_dict)
print('self._De')
print(self._De)
elif self.groundwater__depth_distribution == 'lognormal_spatial':
mu_lognormal = np.log((self._depth_mean[i]**2)/np.sqrt(
self._depth_stdev[i]**2 + self._depth_mean[i]**2))
sigma_lognormal = np.sqrt(np.log((self._depth_stdev[i]**2)/(
self._depth_mean[i]**2)+1))
self._De = np.random.lognormal(mu_lognormal,
sigma_lognormal, self.n)
# Create a switch to imply whether Recharge or depth
if self.groundwater__depth_distribution is not None:
# depth of water
self._soil__mean_watertable_depth = np.mean(self._De)
if self.groundwater__depth_distribution == 'data_driven_spatial':
print('self._HSD_dict')
print(self._HSD_dict)
hw_dist= self._hs_mode - self._De
print('Depth of Water Distribution (SoilDepth-DTWdist)')
print(hw_dist)
print('Depth distribution is not none - count saturated cells')
# calculate probability of saturation
countr = 0
for val in hw_dist: # find how many RW values >= 1
if val <= 0:
countr = countr + 1 # number with RW values (>=1)
# probability: No. high RW values/total No. of values (n)
self._soil__probability_of_saturation = countr/self.n
print('Soil Thickness This Node')
print(self._hs_mode)
hw_dist[np.where(hw_dist<0)] = self._hs_mode #replace saturated cells to be the max soil thickness
print('Depth of Water Distribution (SoilDepth-DTWdist) hw>hs correction')
print(hw_dist)
print('Soil thickness All')
print(self.grid.at_node['soil__thickness'])
print('Mean water table depth')
print(self._soil__mean_watertable_depth)
if self.groundwater__recharge_distribution == 'data_driven_spatial':
self._calculate_HSD_recharge(i)
self._Re /= 1000. # mm->m
elif self.groundwater__recharge_distribution == 'lognormal_spatial':
mu_lognormal = np.log((self._recharge_mean[i]**2)/np.sqrt(
self._recharge_stdev[i]**2 + self._recharge_mean[i]**2))
sigma_lognormal = np.sqrt(np.log((self._recharge_stdev[i]**2)/(
self._recharge_mean[i]**2)+1))
self._Re = np.random.lognormal(mu_lognormal,
sigma_lognormal, self.n)
self._Re /= 1000. # Convert mm to m
#dummy value
# self._De = self._Re*1000 # dummy variable
# Depth to water table distribution based on distribution type
if self.groundwater__depth_distribution == 'data_driven_spatial':
self._calculate_HSD_groundwater_depth(i)
elif self.groundwater__depth_distribution == 'lognormal_spatial':
mu_lognormal = np.log((self._depth_mean[i]**2)/np.sqrt(
self._depth_stdev[i]**2 + self._depth_mean[i]**2))
sigma_lognormal = np.sqrt(np.log((self._depth_stdev[i]**2)/(
self._depth_mean[i]**2)+1))
self._De = np.random.lognormal(mu_lognormal,
sigma_lognormal, self.n)
# Cohesion
if self.Cmin_provided:
self._C = np.random.triangular(self._Cmin, self._Cmode,
self._Cmax, size=self.n)
else:
Cmin = self._Cmode-0.3*self._Cmode
Cmax = self._Cmode+0.3*self._Cmode
self._C = np.random.triangular(self._Cmin, self._Cmode,
self._Cmax, size=self.n)
# phi - internal angle of friction provided in degrees
phi_min = self._phi_mode-0.18*self._phi_mode
phi_max = self._phi_mode+0.32*self._phi_mode
self._phi = np.random.triangular(phi_min, self._phi_mode,
phi_max, size=self.n)
# soil thickness
#hs_min = min(0.005, self._hs_mode-0.3*self._hs_mode) # Alternative
hs_min = self._hs_mode-0.3*self._hs_mode
hs_max = self._hs_mode+0.1*self._hs_mode
self._hs = np.random.triangular(hs_min, self._hs_mode,
hs_max, size=self.n)
self._hs[self._hs <= 0.] = 0.005
# Hydraulic conductivity (Ksat)
if self.Ksat_provided:
Ksatmin = self._Ksatmode-(0.3*self._Ksatmode)
Ksatmax = self._Ksatmode+(0.1*self._Ksatmode)
self._Ksat = np.random.triangular(Ksatmin, self._Ksatmode, Ksatmax,
size=self.n)
self._T = self._Ksat*self._hs
else:
# Transmissivity (T)
Tmin = self._Tmode-(0.3*self._Tmode)
Tmax = self._Tmode+(0.1*self._Tmode)
self._T = np.random.triangular(Tmin, self._Tmode, Tmax, size=self.n)
# calculate Factor of Safety for n number of times
# calculate components of FS equation
# dimensionless cohesion
self._C_dim = self._C/(self._hs*self._rho*self._g)
#print('Before Calculate rw')
#print('Soil thickness')
#print(self._hs_mode)
#print('Depth of Water Distribution')
#print(hw_dist)
#print('Relative wetness Distribution')
#print(hw_dist/self._hs_mode)
# relative wetness
if self.groundwater__recharge_distribution == 'uniform':
print('recharge uniform loop')
self._rel_wetness = ((self._Re)/self._T)*(self._a/np.sin(
np.arctan(self._theta)))
elif self.groundwater__recharge_distribution == 'lognormal':
self._rel_wetness = ((self._Re)/self._T)*(self._a/np.sin(
np.arctan(self._theta)))
elif self.groundwater__recharge_distribution == 'lognormal_spatial':
self._rel_wetness = ((self._Re)/self._T)*(self._a/np.sin(
np.arctan(self._theta)))
elif self.groundwater__recharge_distribution == 'data_driven_spatial':
self._rel_wetness = ((self._Re)/self._T)*(self._a/np.sin(
np.arctan(self._theta)))
elif self.groundwater__depth_distribution == 'uniform':
self._rel_wetness = ((hw_dist)/self._hs_mode)
print('depth uniform loop')
elif self.groundwater__depth_distribution == 'lognormal':
self._rel_wetness = ((hw_dist)/self._hs_mode)
elif self.groundwater__depth_distribution == 'lognormal_spatial':
self._rel_wetness = ((hw_dist)/self._hs_mode)
elif self.groundwater__depth_distribution == 'data_driven_spatial':
self._rel_wetness = ((hw_dist)/self._hs_mode)
print('self._rel_wetness')
print(self._rel_wetness)
# calculate probability of saturation
if self.groundwater__recharge_distribution is not None:
print('recharge distribution is not none - count saturated cells')
print('Relative wetness from recharge')
print(self._rel_wetness)
countr = 0
for val in self._rel_wetness: # find how many RW values >= 1
if val >= 1.0:
countr = countr + 1 # number with RW values (>=1)
# probability: No. high RW values/total No. of values (n)
self._soil__probability_of_saturation = countr/self.n
# Maximum Rel_wetness = 1.0
np.place(self._rel_wetness, self._rel_wetness > 1, 1.0)
self._soil__mean_relative_wetness = np.mean(self._rel_wetness)
print('self._soil__mean_relative_wetness')
print(self._soil__mean_relative_wetness)
print('self._rel_wetness')
print(self._rel_wetness)
print('self._phi')
print(self._phi)
Y = np.tan(np.radians(self._phi))*(1 - (self._rel_wetness*0.5))
# convert from degrees; 0.5 = water to soil density ratio
# calculate Factor-of-safety
self._FS = (self._C_dim/np.sin(np.arctan(self._theta))) + (
np.cos(np.arctan(self._theta)) *
(Y/np.sin(np.arctan(self._theta))))
count = 0
for val in self._FS: # find how many FS values <= 1
if val <= 1.0:
count = count + 1 # number with unstable FS values (<=1)
# probability: No. unstable values/total No. of values (n)
self._landslide__probability_of_failure = np.array(count/self.n)
def calculate_landslide_probability(self, **kwds):
"""
Method creates arrays for output variables then loops through all
the core nodes to run the method 'calculate_factor_of_safety.'
Output parameters probability of failure, mean relative wetness,
and probability of saturation are assigned as fields to nodes.
"""
# Create arrays for data with -9999 as default to store output
self.mean_Relative_Wetness = np.full(self.grid.number_of_nodes, -9999.)
self.prob_fail = np.full(self.grid.number_of_nodes, 0)
self.prob_sat = np.full(self.grid.number_of_nodes, 0)
self.mean_watertable_depth = np.full(self.grid.number_of_nodes, -9999.)
#self._hs_mode = np.full(self.grid.number_of_nodes, -9999.)
#self._De = np.full(self.grid.number_of_nodes, -9999.)
# Run factor of safety Monte Carlo for all core nodes in domain
# i refers to each core node id
for i in self.grid.core_nodes:
self.calculate_factor_of_safety(i)
# Populate storage arrays with calculated values
self.mean_Relative_Wetness[i] = self._soil__mean_relative_wetness
self.prob_fail[i] = self._landslide__probability_of_failure
self.prob_sat[i] = self._soil__probability_of_saturation
if self.groundwater__depth_distribution is not None:
self.mean_watertable_depth[i]=self._soil__mean_watertable_depth
# Values can't be negative
self.mean_Relative_Wetness[
self.mean_Relative_Wetness < 0.] = 0.
self.prob_fail[self.prob_fail < 0.] = 0.
# assign output fields to nodes
self.grid.at_node['soil__mean_relative_wetness'] = (self.mean_Relative_Wetness)
self.grid.at_node['landslide__probability_of_failure'] = self.prob_fail
self.grid.at_node['soil__probability_of_saturation'] = self.prob_sat
if self.groundwater__depth_distribution is not None:
self.mean_watertable_depth[
self.mean_watertable_depth < 0.] = 0.
self.grid.at_node['soil__mean_watertable_depth'] = (
self.mean_watertable_depth)
def _seed_generator(self, seed=0):
"""Seed the random-number generator. This method will create the same
sequence again by re-seeding with the same value (default value is
zero). To create a sequence other than the default, assign non-zero
value for seed.
"""
np.random.seed(seed)
def _interpolate_HSD_dict(self):
"""This method uses a non-parametric approach to expand the input
recharge array to the length of number of iterations. Output is
a new dictionary of interpolated recharge for each HSD id.
"""
HSD_dict = copy.deepcopy(self._HSD_dict)
# First generate interpolated Re for each HSD grid
Yrand = np.sort(np.random.rand(self.n))
# n random numbers (0 to 1) in a column
for vkey in HSD_dict.keys():
if isinstance(HSD_dict[vkey], int):
continue # loop back up if value is integer (e.g. -9999)
Re_temp = HSD_dict[vkey] # an array of annual Re for 1 HSD grid
Fx = ECDF(Re_temp) # instantiate to get probabilities with Re
Fx_ = Fx(Re_temp) # probability array associated with Re data
# interpolate function based on recharge data & probability
f = interpolate.interp1d(Fx_, Re_temp, bounds_error=False,
fill_value=min(Re_temp))
# array of Re interpolated from Yrand probabilities (n count)
Re_interpolated = f(Yrand)
# replace values in HSD_dict with interpolated Re
HSD_dict[vkey] = Re_interpolated
self._interpolated_HSD_dict = HSD_dict
def _interpolate_HSD_array(self):
Yrand = np.sort(np.random.rand(self.n))
Fx = ECDF(self._hwdist.values[0])
Fx_ = Fx(self._hwdist.values[0])
print(Fx_)
f = interpolate.interp1d(Fx_, self._hwdist.values[0], bounds_error=False,
fill_value=min(self._hwdist.values[0]))
self._interp_De = f(Yrand)
print('Input Depth Annual Year Max Data = 3 years')
print(self._hwdist.values[0])
print('Input Depth Annual Year Max Interpolated Data = n years')
print(self._interp_De)
def _calculate_HSD_recharge(self, i):
"""This method calculates the resultant recharge at node i of the
model domain, using recharge of contributing HSD ids and the areal
fractions of upstream contributing HSD ids. Output is a numpy array
of recharge at node i.
"""
store_Re = np.zeros(self.n)
HSD_id_list = self._HSD_id_dict[i]
fract_list = self._fract_dict[i]
for j in range(0, len(HSD_id_list)):
Re_temp = self._interpolated_HSD_dict[HSD_id_list[j]]
fract_temp = fract_list[j]
Re_adj = (Re_temp*fract_temp)
store_Re = np.vstack((store_Re, np.array(Re_adj)))
self._Re = np.sum(store_Re, 0)
def _calculate_HSD_groundwater_depth(self, i):
"""This method calculates the resultant groundwater depth at node i of the
model domain, using depth to water table. Output is a numpy array
of depth to groundwater at node i.
"""
groundwater__depth_HSD_inputs=self._HSD_dict[i]
self._hwdist = pd.DataFrame.from_dict(groundwater__depth_HSD_inputs, orient='index')
print('In calculate HSD loop - _hwdist.values[0]')
print(self._hwdist.values[0])
self._interpolate_HSD_array()
print('In calculate HSD loop -interpolate _hwdist.values[0]')
print(self._interp_De)
self._De=self._interp_De
print('interpolated Depth dist FOS input')
print(self._De)