forked from CandyBrain/Hackathon2022
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkeras_optimizers.py
180 lines (149 loc) · 7.58 KB
/
keras_optimizers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
"""From built-in optimizer classes.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import six
import copy
from six.moves import zip
from keras import backend as K
from keras.utils.generic_utils import serialize_keras_object
from keras.utils.generic_utils import deserialize_keras_object
from keras.legacy import interfaces
from keras.optimizers import Optimizer
class SGDW(Optimizer):
"""Stochastic gradient descent optimizer with decoupled weight decay.
Includes support for momentum, learning rate decay, Nesterov momentum,
and warm restarts.
# Arguments
lr: float >= 0. Learning rate.
momentum: float >= 0. Parameter that accelerates SGD
in the relevant direction and dampens oscillations.
decay: float >= 0. Learning rate decay over each update.
nesterov: boolean. Whether to apply Nesterov momentum.
weight_decay: float >= 0. Normalized weight decay.
eta: float >= 0. The multiplier to schedule learning rate and weight decay.
steps_per_cycle: int > 0. The number of training batches of a restart cycle.
# References
- [Decoupled Weight Decay Regularization](https://arxiv.org/abs/1711.05101)
"""
def __init__(self, lr=0.01, momentum=0., decay=0.,
nesterov=False, weight_decay=0.025,
eta=1.0, steps_per_cycle=1, **kwargs):
super(SGDW, self).__init__(**kwargs)
with K.name_scope(self.__class__.__name__):
self.iterations = K.variable(0, dtype='int64', name='iterations')
self.lr = K.variable(lr, name='lr')
self.momentum = K.variable(momentum, name='momentum')
self.decay = K.variable(decay, name='decay')
self.eta = K.variable(eta, name='eta')
self.weight_decay = K.variable(weight_decay, name='weight_decay')
self.steps_per_cycle = K.variable(steps_per_cycle, name='steps_per_cycle')
self.initial_decay = decay
self.nesterov = nesterov
@interfaces.legacy_get_updates_support
def get_updates(self, loss, params):
grads = self.get_gradients(loss, params)
self.updates = [K.update_add(self.iterations, 1)]
w_d = self.eta*self.weight_decay/K.sqrt(self.steps_per_cycle)
lr = self.eta*self.lr
if self.initial_decay > 0:
lr = lr * (1. / (1. + self.decay * K.cast(self.iterations,
K.dtype(self.decay))))
# momentum
shapes = [K.int_shape(p) for p in params]
moments = [K.zeros(shape) for shape in shapes]
self.weights = [self.iterations] + moments
for p, g, m in zip(params, grads, moments):
v = self.momentum * m - lr * g # velocity
self.updates.append(K.update(m, v))
if self.nesterov:
new_p = p + self.momentum * v - lr * g - w_d * p
else:
new_p = p + v - w_d * p
# Apply constraints.
if getattr(p, 'constraint', None) is not None:
new_p = p.constraint(new_p)
self.updates.append(K.update(p, new_p))
return self.updates
def get_config(self):
config = {'lr': float(K.get_value(self.lr)),
'momentum': float(K.get_value(self.momentum)),
'decay': float(K.get_value(self.decay)),
'nesterov': self.nesterov,
'weight_decay': float(K.get_value(self.weight_decay)),
'eta': float(K.get_value(self.eta)),
'steps_per_cycle': int(K.get_value(self.steps_per_cycle))}
base_config = super(SGDW, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
class AdamW(Optimizer):
"""AdamW optimizer with decoupled weight decay.
Default parameters follow those provided in the original Adam paper.
# Arguments
lr: float >= 0. Learning rate.
beta_1: float, 0 < beta < 1. Generally close to 1.
beta_2: float, 0 < beta < 1. Generally close to 1.
epsilon: float >= 0. Fuzz factor. If `None`, defaults to `K.epsilon()`.
decay: float >= 0. Learning rate decay over each update.
weight_decay: float >= 0. Normalized weight decay.
eta: float >= 0. The multiplier to schedule learning rate and weight decay.
steps_per_cycle: int > 0. The number of training batches of a restart cycle.
# References
- [Adam - A Method for Stochastic Optimization](http://arxiv.org/abs/1412.6980v8)
- [Decoupled Weight Decay Regularization](https://arxiv.org/abs/1711.05101)
"""
def __init__(self, lr=0.001, beta_1=0.9, beta_2=0.999,
epsilon=None, decay=0., weight_decay=0.025,
eta=1.0, steps_per_cycle=1, **kwargs):
super(AdamW, self).__init__(**kwargs)
with K.name_scope(self.__class__.__name__):
self.iterations = K.variable(0, dtype='int64', name='iterations')
self.lr = K.variable(lr, name='lr')
self.beta_1 = K.variable(beta_1, name='beta_1')
self.beta_2 = K.variable(beta_2, name='beta_2')
self.decay = K.variable(decay, name='decay')
self.eta = K.variable(eta, name='eta')
self.weight_decay = K.variable(weight_decay, name='weight_decay')
self.steps_per_cycle = K.variable(steps_per_cycle, name='steps_per_cycle')
if epsilon is None:
epsilon = K.epsilon()
self.epsilon = epsilon
self.initial_decay = decay
@interfaces.legacy_get_updates_support
def get_updates(self, loss, params):
grads = self.get_gradients(loss, params)
self.updates = [K.update_add(self.iterations, 1)]
w_d = self.eta*self.weight_decay/K.sqrt(self.steps_per_cycle)
lr = self.eta*self.lr
if self.initial_decay > 0:
lr = lr * (1. / (1. + self.decay * K.cast(self.iterations,
K.dtype(self.decay))))
t = K.cast(self.iterations, K.floatx()) + 1
lr_t = lr * (K.sqrt(1. - K.pow(self.beta_2, t)) /
(1. - K.pow(self.beta_1, t)))
ms = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
vs = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
self.weights = [self.iterations] + ms + vs
for p, g, m, v in zip(params, grads, ms, vs):
m_t = (self.beta_1 * m) + (1. - self.beta_1) * g
v_t = (self.beta_2 * v) + (1. - self.beta_2) * K.square(g)
p_t = p - lr_t * m_t / (K.sqrt(v_t) + self.epsilon) - w_d * p
self.updates.append(K.update(m, m_t))
self.updates.append(K.update(v, v_t))
new_p = p_t
# Apply constraints.
if getattr(p, 'constraint', None) is not None:
new_p = p.constraint(new_p)
self.updates.append(K.update(p, new_p))
return self.updates
def get_config(self):
config = {'lr': float(K.get_value(self.lr)),
'beta_1': float(K.get_value(self.beta_1)),
'beta_2': float(K.get_value(self.beta_2)),
'decay': float(K.get_value(self.decay)),
'weight_decay': float(K.get_value(self.weight_decay)),
'eta': float(K.get_value(self.eta)),
'steps_per_cycle': int(K.get_value(self.steps_per_cycle)),
'epsilon': self.epsilon}
base_config = super(AdamW, self).get_config()
return dict(list(base_config.items()) + list(config.items()))