-
Notifications
You must be signed in to change notification settings - Fork 5
/
modeling_kebio.py
1017 lines (872 loc) · 37.8 KB
/
modeling_kebio.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import os
import re
import torch
import warnings
from dataclasses import dataclass
from typing import Optional, Tuple
from transformers import PreTrainedModel, PretrainedConfig, BertPreTrainedModel
from transformers.file_utils import (TF_WEIGHTS_NAME, TF2_WEIGHTS_NAME, WEIGHTS_NAME)
from transformers.file_utils import (is_remote_url, hf_bucket_url, cached_path, is_torch_tpu_available)
from transformers.modeling_bert import (
BertEmbeddings,
BertLayer,
BertOnlyMLMHead,
ModelOutput,
BaseModelOutput,
MaskedLMOutput,
SequenceClassifierOutput,
TokenClassifierOutput,
load_tf_weights_in_bert,
)
from transformers.utils import logging
from configuration_kebio import KebioConfig
logger = logging.get_logger(__name__)
class KGMaskedLMOutput(MaskedLMOutput):
loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
mention_detection_loss: Optional[torch.FloatTensor] = None
entity_linking_loss: Optional[torch.FloatTensor] = None
mlm_loss: Optional[torch.FloatTensor] = None
@dataclass
class KebioModelOutput(ModelOutput):
last_hidden_state: torch.FloatTensor
entity_logits: torch.FloatTensor
mention_detection_logits: torch.FloatTensor
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
class KebioContextEncoder(torch.nn.Module):
def __init__(self, config: KebioConfig):
super().__init__()
self.config = config
self.layer = torch.nn.ModuleList([
BertLayer(config) for _ in range(config.num_context_layers)])
def forward(
self,
hidden_states,
attention_mask=None,
head_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
output_attentions=False,
output_hidden_states=False,
return_dict=False,
):
all_hidden_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_head_mask = head_mask[i] if head_mask is not None else None
if getattr(self.config, "gradient_checkpointing", False):
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs, output_attentions)
return custom_forward
layer_outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(layer_module),
hidden_states,
attention_mask,
layer_head_mask,
encoder_hidden_states,
encoder_attention_mask,
)
else:
layer_outputs = layer_module(
hidden_states,
attention_mask,
layer_head_mask,
encoder_hidden_states,
encoder_attention_mask,
output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_attentions
)
class KebioContextEntityEncoder(torch.nn.Module):
def __init__(self, config: KebioConfig,):
super().__init__()
self.config = config
self.layer = torch.nn.ModuleList([
BertLayer(config)
for _ in range(config.num_hidden_layers - config.num_context_layers)])
def forward(
self,
hidden_states,
attention_mask=None,
head_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
output_attentions=False,
output_hidden_states=False,
return_dict=False,
):
all_hidden_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_head_mask = head_mask[i] if head_mask is not None else None
if getattr(self.config, "gradient_checkpointing", False):
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs, output_attentions)
return custom_forward
layer_outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(layer_module),
hidden_states,
attention_mask,
layer_head_mask,
encoder_hidden_states,
encoder_attention_mask,
)
else:
layer_outputs = layer_module(
hidden_states,
attention_mask,
layer_head_mask,
encoder_hidden_states,
encoder_attention_mask,
output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_attentions
)
class KebioLinker(torch.nn.Module):
def __init__(self, config: KebioConfig):
super().__init__()
self.num_entities = config.num_entities
self.entity_embeddings = torch.nn.Linear(in_features=config.entity_size,
out_features=config.num_entities,
bias=False)
self.mention_to_entity_projection = torch.nn.Linear(in_features=config.hidden_size * 2,
out_features=config.entity_size)
def forward(self, hidden_states: torch.Tensor):
batch_size, max_mentions, mention_size = hidden_states.shape
hidden_states = self.mention_to_entity_projection(hidden_states)
hidden_states = hidden_states.view(batch_size * max_mentions, -1)
hidden_states = self.entity_embeddings(hidden_states)
hidden_states = hidden_states.view(batch_size, max_mentions, self.num_entities)
return hidden_states
class KebioModel(BertPreTrainedModel):
def __init__(self, config: KebioConfig):
super().__init__(config)
self.config = config
# context encoder
self.embeddings = BertEmbeddings(config)
self.context_encoder = KebioContextEncoder(config)
# mention detector
self.num_labels = 3
self.mention_detector = torch.nn.Linear(in_features=config.hidden_size,
out_features=3)
#
self.entity_linker = KebioLinker(config)
self.entity_context_projection = torch.nn.Linear(in_features=config.entity_size,
out_features=config.hidden_size)
self.layer_norm = torch.nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
#
self.recontext_encoder = KebioContextEntityEncoder(config)
self.init_weights()
def get_input_embeddings(self):
return self.embeddings.word_embeddings
def set_input_embeddings(self, value):
self.embeddings.word_embeddings = value
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
mention_detection_labels=None,
head_mask=None,
inputs_embeds=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
# The encoder_hidden_states and encoder_attention_mask are for text generation.
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_shape = input_ids.size()
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
device = input_ids.device if input_ids is not None else inputs_embeds.device
if attention_mask is None:
attention_mask = torch.ones(input_shape, device=device)
if token_type_ids is None:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape, device)
# If a 2D or 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if self.config.is_decoder and encoder_hidden_states is not None:
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
if encoder_attention_mask is None:
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
else:
encoder_extended_attention_mask = None
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
embedding_output = self.embeddings(
input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds
)
context_encoder_outputs = self.context_encoder(
embedding_output,
attention_mask=extended_attention_mask,
head_mask=head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_extended_attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
context_sequence_output = context_encoder_outputs[0]
# Do mention detection
mention_detection_logits = self.mention_detector(context_sequence_output)
if mention_detection_labels is None:
mention_detection_labels = torch.argmax(mention_detection_logits, dim=-1)
mention_detection_labels = mention_detection_labels.cpu().numpy()
lengths = torch.sum(input_ids != self.config.pad_token_id, dim=-1, dtype=torch.long).tolist()
batch_spans = []
for bid, labels in enumerate(mention_detection_labels):
result_starts, result_ends = [], []
prev_label = None
for position in range(1, lengths[bid]):
label = labels[position]
if label == 1 or (label == 2 and (not prev_label or prev_label == 0)):
result_starts.append(position)
result_ends.append(position + 1)
elif label == 2:
if len(result_starts) == 0:
result_starts.append(position)
result_ends.append(position)
result_ends[-1] = position + 1
prev_label = label
spans = [(result_start, result_end) for result_start, result_end in zip(result_starts, result_ends)]
batch_spans.append(spans)
max_mentions = max([len(spans) for spans in batch_spans])
entity_states = torch.zeros_like(context_sequence_output)
if max_mentions > 0:
if max_mentions > self.config.max_mentions:
max_mentions = self.config.max_mentions
for i in range(len(batch_spans)):
if len(batch_spans[i]) > max_mentions:
batch_spans[i] = batch_spans[i][:max_mentions]
else:
while len(batch_spans[i]) < max_mentions:
batch_spans[i].append((0, 1))
batch_size, seq_length, hidden_size = context_sequence_output.shape
batch_span_offsets = torch.arange(
0, batch_size * seq_length, seq_length, dtype=torch.long).view(batch_size, 1).repeat(1, max_mentions)
batch_span_start_offsets = torch.tensor(
[[span[0] for span in spans] for i, spans in enumerate(batch_spans)], dtype=torch.long) + batch_span_offsets
batch_span_end_offsets = torch.tensor(
[[span[1] - 1 for span in spans] for i, spans in enumerate(batch_spans)], dtype=torch.long) + batch_span_offsets
flat_context_sequence_output = context_sequence_output.view(batch_size * seq_length, -1)
span_head_states = flat_context_sequence_output[batch_span_start_offsets.view(-1)]
span_tail_states = flat_context_sequence_output[batch_span_end_offsets.view(-1)]
mention_context_states = torch.cat([span_head_states, span_tail_states], dim=1).view(batch_size, max_mentions, -1)
entity_logits = self.entity_linker.forward(mention_context_states)
topk_logits, topk_indices = torch.topk(entity_logits,
min(self.config.max_candidate_entities, self.config.num_entities),
dim=-1)
a = torch.nn.Softmax(dim=-1)(topk_logits)
batch_size, max_mentions, depth = a.shape
flat_topk_indices = topk_indices.view(-1)
entity_embeddings = torch.index_select(self.entity_linker.entity_embeddings.weight, dim=0, index=flat_topk_indices)
entity_embeddings = entity_embeddings.view(batch_size, max_mentions, depth, -1)
entity_embeddings = torch.sum(a.unsqueeze(-1) * entity_embeddings, dim=-2)
for i in range(len(batch_spans)):
for j, (start, end) in enumerate(batch_spans[i]):
entity_states[i, start: end + 1, :] = self.entity_context_projection(entity_embeddings[i, j, :])
else:
entity_logits = None
context_sequence_output = self.layer_norm(context_sequence_output + entity_states)
recontext_encoder_outputs = self.recontext_encoder(
context_sequence_output,
attention_mask=extended_attention_mask,
head_mask=head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_extended_attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,)
recontext_sequence_output = recontext_encoder_outputs[0]
if not return_dict:
return (mention_detection_logits, entity_logits, recontext_sequence_output, ) + \
recontext_encoder_outputs[1:] + context_encoder_outputs
return KebioModelOutput(
entity_logits=entity_logits,
last_hidden_state=recontext_sequence_output,
mention_detection_logits=mention_detection_logits,
hidden_states=(recontext_encoder_outputs.hidden_states + context_encoder_outputs.hidden_states),
attentions=(recontext_encoder_outputs.attentions + context_sequence_output.attentions)
)
class KebioPreTrainedModel(PreTrainedModel):
config_class = KebioConfig
load_tf_weights = load_tf_weights_in_bert
base_model_prefix = "bert"
authorized_missing_keys = [r"position_ids"]
def _init_weights(self, module):
""" Initialize the weights """
if isinstance(module, (torch.nn.Linear, torch.nn.Embedding)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
elif isinstance(module, torch.nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
if isinstance(module, torch.nn.Linear) and module.bias is not None:
module.bias.data.zero_()
class KebioForPreTraining(KebioPreTrainedModel):
def __init__(self, config: KebioConfig):
super().__init__(config)
self.bert = KebioModel(config)
self.cls = BertOnlyMLMHead(config)
self.init_weights()
def get_output_embeddings(self):
# NOTE: this is needed to resize the embeddings!
return self.cls.predictions.decoder
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
mention_detection_labels=None,
gold_entity_ids=None,
head_mask=None,
inputs_embeds=None,
mlm_labels=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
**kwargs
):
if "masked_lm_labels" in kwargs:
warnings.warn(
"The `masked_lm_labels` argument is deprecated and will be removed in a future version, use `labels` instead.",
FutureWarning,
)
mlm_labels = kwargs.pop("masked_lm_labels")
assert kwargs == {}, f"Unexpected keyword arguments: {list(kwargs.keys())}."
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.bert(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
mention_detection_labels=mention_detection_labels,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
mention_detection_logits, entity_logits, recontext_sequence_output = outputs[:3]
mention_detection_loss = None
entity_linking_loss = None
masked_lm_loss = None
total_loss = None
if mention_detection_labels is not None:
loss_fct = torch.nn.CrossEntropyLoss()
# Only keep active parts of the loss
if attention_mask is not None:
active_loss = attention_mask.view(-1) == 1
active_logits = mention_detection_logits.view(-1, 3)
active_labels = torch.where(
active_loss, mention_detection_labels.view(-1),
torch.tensor(loss_fct.ignore_index).type_as(mention_detection_labels)
)
mention_detection_loss = loss_fct(active_logits, active_labels)
total_loss = mention_detection_loss
else:
mention_detection_loss = loss_fct(mention_detection_logits.view(-1, self.config.num_labels),
mention_detection_labels.view(-1))
total_loss = mention_detection_loss
if gold_entity_ids is not None and entity_logits is not None:
num_mentions = gold_entity_ids.shape[1]
if num_mentions > self.config.max_mentions:
gold_entity_ids = gold_entity_ids[:, :self.config.max_mentions].contiguous()
loss_fct = torch.nn.CrossEntropyLoss()
entity_linking_loss = loss_fct(entity_logits.view(-1, self.config.num_entities),
gold_entity_ids.view(-1))
if total_loss is None:
total_loss = entity_linking_loss
else:
total_loss = total_loss + entity_linking_loss
else:
entity_linking_loss = None
prediction_scores = self.cls(recontext_sequence_output)
if mlm_labels is not None:
loss_fct = torch.nn.CrossEntropyLoss()
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), mlm_labels.view(-1))
if total_loss is None:
total_loss = masked_lm_loss
else:
total_loss += masked_lm_loss
else:
masked_lm_loss = None
if not return_dict:
output = (prediction_scores, ) + outputs[2:] + (mention_detection_loss, entity_linking_loss, masked_lm_loss)
return ((total_loss,) + output) if total_loss is not None else output
return KGMaskedLMOutput(
loss=total_loss,
logits=prediction_scores,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
mention_detection_loss=mention_detection_loss,
entity_linking_loss=entity_linking_loss,
mlm_loss=masked_lm_loss,
)
@classmethod
def from_bert_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
config = kwargs.pop("config", None)
state_dict = kwargs.pop("state_dict", None)
cache_dir = kwargs.pop("cache_dir", None)
from_tf = kwargs.pop("from_tf", False)
force_download = kwargs.pop("force_download", False)
resume_download = kwargs.pop("resume_download", False)
proxies = kwargs.pop("proxies", None)
output_loading_info = kwargs.pop("output_loading_info", False)
local_files_only = kwargs.pop("local_files_only", False)
use_cdn = kwargs.pop("use_cdn", True)
mirror = kwargs.pop("mirror", None)
# Load config if we don't provide a configuration
if not isinstance(config, PretrainedConfig):
config_path = config if config is not None else pretrained_model_name_or_path
config, model_kwargs = cls.config_class.from_pretrained(
config_path,
*model_args,
cache_dir=cache_dir,
return_unused_kwargs=True,
force_download=force_download,
resume_download=resume_download,
proxies=proxies,
local_files_only=local_files_only,
**kwargs,
)
else:
model_kwargs = kwargs
# Load model
if pretrained_model_name_or_path is not None:
if os.path.isdir(pretrained_model_name_or_path):
if from_tf and os.path.isfile(os.path.join(pretrained_model_name_or_path, TF_WEIGHTS_NAME + ".index")):
# Load from a TF 1.0 checkpoint
archive_file = os.path.join(pretrained_model_name_or_path, TF_WEIGHTS_NAME + ".index")
elif from_tf and os.path.isfile(os.path.join(pretrained_model_name_or_path, TF2_WEIGHTS_NAME)):
# Load from a TF 2.0 checkpoint
archive_file = os.path.join(pretrained_model_name_or_path, TF2_WEIGHTS_NAME)
elif os.path.isfile(os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME)):
# Load from a PyTorch checkpoint
archive_file = os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME)
else:
raise EnvironmentError(
"Error no file named {} found in directory {} or `from_tf` set to False".format(
[WEIGHTS_NAME, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME + ".index"],
pretrained_model_name_or_path,
)
)
elif os.path.isfile(pretrained_model_name_or_path) or is_remote_url(pretrained_model_name_or_path):
archive_file = pretrained_model_name_or_path
elif os.path.isfile(pretrained_model_name_or_path + ".index"):
assert (
from_tf
), "We found a TensorFlow checkpoint at {}, please set from_tf to True to load from this checkpoint".format(
pretrained_model_name_or_path + ".index"
)
archive_file = pretrained_model_name_or_path + ".index"
else:
archive_file = hf_bucket_url(
pretrained_model_name_or_path,
filename=(TF2_WEIGHTS_NAME if from_tf else WEIGHTS_NAME),
use_cdn=use_cdn,
mirror=mirror,
)
try:
# Load from URL or cache if already cached
resolved_archive_file = cached_path(
archive_file,
cache_dir=cache_dir,
force_download=force_download,
proxies=proxies,
resume_download=resume_download,
local_files_only=local_files_only,
)
if resolved_archive_file is None:
raise EnvironmentError
except EnvironmentError:
msg = (
f"Can't load weights for '{pretrained_model_name_or_path}'. Make sure that:\n\n"
f"- '{pretrained_model_name_or_path}' is a correct model identifier listed on 'https://huggingface.co/models'\n\n"
f"- or '{pretrained_model_name_or_path}' is the correct path to a directory containing a file named one of {WEIGHTS_NAME}, {TF2_WEIGHTS_NAME}, {TF_WEIGHTS_NAME}.\n\n"
)
raise EnvironmentError(msg)
if resolved_archive_file == archive_file:
logger.info("loading weights file {}".format(archive_file))
else:
logger.info("loading weights file {} from cache at {}".format(archive_file, resolved_archive_file))
else:
resolved_archive_file = None
# Instantiate model.
model = cls(config, *model_args, **model_kwargs)
if state_dict is None and not from_tf:
try:
state_dict = torch.load(resolved_archive_file, map_location="cpu")
except Exception:
raise OSError(
"Unable to load weights from pytorch checkpoint file. "
"If you tried to load a PyTorch model from a TF 2.0 checkpoint, please set from_tf=True. "
)
missing_keys = []
unexpected_keys = []
error_msgs = []
if from_tf:
if resolved_archive_file.endswith(".index"):
# Load from a TensorFlow 1.X checkpoint - provided by original authors
model = cls.load_tf_weights(model, config, resolved_archive_file[:-6]) # Remove the '.index'
else:
# Load from our TensorFlow 2.0 checkpoints
try:
from .modeling_tf_pytorch_utils import load_tf2_checkpoint_in_pytorch_model
model = load_tf2_checkpoint_in_pytorch_model(model, resolved_archive_file, allow_missing_keys=True)
except ImportError:
logger.error(
"Loading a TensorFlow model in PyTorch, requires both PyTorch and TensorFlow to be installed. Please see "
"https://pytorch.org/ and https://www.tensorflow.org/install/ for installation instructions."
)
raise
else:
# Convert old format to new format if needed from a PyTorch state_dict
old_keys = []
new_keys = []
for key in state_dict.keys():
new_key = None
if "gamma" in key:
new_key = key.replace("gamma", "weight")
if "beta" in key:
new_key = key.replace("beta", "bias")
if new_key:
old_keys.append(key)
new_keys.append(new_key)
for old_key, new_key in zip(old_keys, new_keys):
state_dict[new_key] = state_dict.pop(old_key)
# copy state_dict so _load_from_state_dict can modify it
metadata = getattr(state_dict, "_metadata", None)
state_dict = state_dict.copy()
if metadata is not None:
state_dict._metadata = metadata
# PyTorch's `_load_from_state_dict` does not copy parameters in a module's descendants
# so we need to apply the function recursively.
def load(module: torch.nn.Module, prefix=""):
local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {})
module._load_from_state_dict(
state_dict,
prefix,
local_metadata,
True,
missing_keys,
unexpected_keys,
error_msgs,
)
for name, child in module._modules.items():
if child is not None:
load(child, prefix + name + ".")
# Make sure we are able to load base models as well as derived models (with heads)
start_prefix = ""
model_to_load = model
has_prefix_module = any(s.startswith(cls.base_model_prefix) for s in state_dict.keys())
if not hasattr(model, cls.base_model_prefix) and has_prefix_module:
start_prefix = cls.base_model_prefix + "."
if hasattr(model, cls.base_model_prefix) and not has_prefix_module:
model_to_load = getattr(model, cls.base_model_prefix)
#
key_changes = []
for key in state_dict.keys():
if key.startswith('bert.encoder.layer.'):
n_layer = int(key.split('.')[3])
if n_layer < config.num_context_layers:
new_key = key.replace('.encoder.', '.context_encoder.')
else:
new_key = key.replace('.encoder.layer.{}'.format(n_layer),
'.recontext_encoder.layer.{}'.format(n_layer - config.num_context_layers))
logger.info('state_dict mapping: {:60s} -> {:70s} {}'.format(key, new_key, list(state_dict[key].shape)))
key_changes.append((key, new_key))
for key, new_key in key_changes:
state_dict[new_key] = state_dict.pop(key)
load(model_to_load, prefix=start_prefix)
if model.__class__.__name__ != model_to_load.__class__.__name__:
base_model_state_dict = model_to_load.state_dict().keys()
head_model_state_dict_without_base_prefix = [
key.split(cls.base_model_prefix + ".")[-1] for key in model.state_dict().keys()
]
missing_keys.extend(head_model_state_dict_without_base_prefix - base_model_state_dict)
# Some models may have keys that are not in the state by design, removing them before needlessly warning
# the user.
if cls.authorized_missing_keys is not None:
for pat in cls.authorized_missing_keys:
missing_keys = [k for k in missing_keys if re.search(pat, k) is None]
if cls.authorized_unexpected_keys is not None:
for pat in cls.authorized_unexpected_keys:
unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None]
if len(unexpected_keys) > 0:
logger.warning(
f"Some weights of the model checkpoint at {pretrained_model_name_or_path} were not used when "
f"initializing {model.__class__.__name__}: {unexpected_keys}\n"
f"- This IS expected if you are initializing {model.__class__.__name__} from the checkpoint of a model trained on another task "
f"or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPretraining model).\n"
f"- This IS NOT expected if you are initializing {model.__class__.__name__} from the checkpoint of a model that you expect "
f"to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model)."
)
else:
logger.info(f"All model checkpoint weights were used when initializing {model.__class__.__name__}.\n")
if len(missing_keys) > 0:
logger.warning(
f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at {pretrained_model_name_or_path} "
f"and are newly initialized: {missing_keys}\n"
f"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference."
)
else:
logger.info(
f"All the weights of {model.__class__.__name__} were initialized from the model checkpoint at {pretrained_model_name_or_path}.\n"
f"If your task is similar to the task the model of the checkpoint was trained on, "
f"you can already use {model.__class__.__name__} for predictions without further training."
)
if len(error_msgs) > 0:
raise RuntimeError(
"Error(s) in loading state_dict for {}:\n\t{}".format(
model.__class__.__name__, "\n\t".join(error_msgs)
)
)
# make sure token embedding weights are still tied if needed
model.tie_weights()
# Set model in evaluation mode to deactivate DropOut modules by default
model.eval()
if output_loading_info:
loading_info = {
"missing_keys": missing_keys,
"unexpected_keys": unexpected_keys,
"error_msgs": error_msgs,
}
return model, loading_info
if hasattr(config, "xla_device") and config.xla_device and is_torch_tpu_available():
import torch_xla.core.xla_model as xm
model = xm.send_cpu_data_to_device(model, xm.xla_device())
model.to(xm.xla_device())
return model
class KebioForSequenceClassification(BertPreTrainedModel):
def __init__(self, config: KebioConfig):
super().__init__(config)
self.num_labels = config.num_labels
self.bert = KebioModel(config)
self.dropout = torch.nn.Dropout(config.hidden_dropout_prob)
self.classifier = torch.nn.Linear(config.hidden_size, config.num_labels)
self.init_weights()
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
labels=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.bert(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[2]
pooled_output = sequence_output[:, 0]
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
loss = None
if labels is not None:
if self.num_labels == 1:
# We are doing regression
loss_fct = torch.nn.MSELoss()
loss = loss_fct(logits.view(-1), labels.view(-1))
else:
loss_fct = torch.nn.CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
class KebioForRelationExtraction(BertPreTrainedModel):
authorized_unexpected_keys = [r"pooler"]
def __init__(self, config: KebioConfig):
super().__init__(config)
self.num_labels = config.num_labels
self.bert = KebioModel(config)
self.dropout = torch.nn.Dropout(config.hidden_dropout_prob)
self.classifier = torch.nn.Linear(config.hidden_size * 2, config.num_labels)
self.init_weights()
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
first_entity_position=None,
second_entity_position=None,
head_mask=None,
inputs_embeds=None,
labels=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.bert(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[2]
batch_size = sequence_output.shape[0]
pooled_output = torch.cat(
[sequence_output[torch.arange(batch_size), first_entity_position, :],
sequence_output[torch.arange(batch_size), second_entity_position, :]], dim=1)
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
loss = None
if labels is not None:
if self.num_labels == 1:
# We are doing regression
loss_fct = torch.nn.MSELoss()
loss = loss_fct(logits.view(-1), labels.view(-1))
else:
loss_fct = torch.nn.CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
class KebioForTokenClassification(BertPreTrainedModel):
authorized_unexpected_keys = [r"pooler"]
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.bert = KebioModel(config)
self.dropout = torch.nn.Dropout(config.hidden_dropout_prob)
self.classifier = torch.nn.Linear(config.hidden_size, config.num_labels)
self.init_weights()
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
labels=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
Labels for computing the token classification loss.
Indices should be in ``[0, ..., config.num_labels - 1]``.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.bert(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[2]
sequence_output = self.dropout(sequence_output)
logits = self.classifier(sequence_output)
loss = None
if labels is not None:
loss_fct = torch.nn.CrossEntropyLoss()
# Only keep active parts of the loss
if attention_mask is not None:
active_loss = attention_mask.view(-1) == 1
active_logits = logits.view(-1, self.num_labels)