-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmain.py
153 lines (119 loc) · 4.67 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import torch
import torch.backends.cudnn as cudnn
import torchvision.datasets as datasets
from torchvision.transforms import transforms
from torch.utils.data import DataLoader
from torch.utils.data import random_split
import torch.optim as optim
from torch.optim import Adam
import os
import argparse
from models import *
from utils import get_progress_bar, update_progress_bar, ApplyTransform
# 0. Define some parameters
parser = argparse.ArgumentParser(description='UCMerced Land Use')
parser.add_argument('--lr', default=0.001, type=float, help='learning rate')
parser.add_argument('--resume', '-r', default=False, action='store_true', help='resume from checkpoint')
args = parser.parse_args()
# os.environ["CUDA_VISIBLE_DEVICES"] = "0, 1"
device = 'cuda' if torch.cuda.is_available() else 'cpu'
# 1. Load and normalizing dataset
# 1. Data augmentation
transforms_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])
transforms_test = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])
total_dataset = datasets.ImageFolder('Images', transform=None)
train_size = int(0.8 * len(total_dataset))
test_size = len(total_dataset) - train_size
train_dataset, test_dataset = random_split(total_dataset, [train_size, test_size])
train_dataset = ApplyTransform(train_dataset, transform=transforms_train)
test_dataset = ApplyTransform(test_dataset, transform=transforms_test)
train_dataset_loader = DataLoader(dataset=train_dataset, batch_size=16)
test_dataset_loader = DataLoader(dataset=test_dataset, batch_size=16)
# 2. Define a Convolutional Network
# net, model_name = LeNet(), 'LeNet'
# net, model_name = ResNet18(), 'ResNet18'
net, model_name = ResNet34(), 'ResNet34'
print(model_name + ' is ready!')
net = net.to(device)
# Use GPU or not
if device == 'cuda':
net = torch.nn.DataParallel(net)
print("Let's use", torch.cuda.device_count(), "GPUs")
cudnn.benchmark = True
start_epoch = 0
best_acc = 0
if args.resume == True:
print('==> Resuming from checkpoint..')
assert os.path.isdir('checkpoint/' + model_name), 'Error : no checkpoint directory found!'
checkpoint = torch.load('./checkpoint/' + model_name + '/ckpt.pth')
net.load_state_dict(checkpoint['net'])
best_acc = checkpoint['acc']
start_epoch = checkpoint['epoch'] + 1
# 3. Define a loss function
criterion = nn.CrossEntropyLoss()
# optimizer = Adam(net.parameters())
optimizer = optim.SGD(net.parameters(), lr=args.lr, momentum=0.9, weight_decay=5e-4)
# 4. Train the network on the training data
def train(epoch):
running_loss = 0.0
net.train()
correct = 0
total = 0
progress_bar_obj = get_progress_bar(len(train_dataset_loader))
print('Epoch', epoch, 'Train')
for i, (inputs, labels) in enumerate(train_dataset_loader):
inputs, labels = inputs.to(device), labels.to(device) # this line doesn't work when use cpu
# zero the parameter gradients
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
_, predicted = outputs.max(1)
total += labels.size(0)
correct += predicted.eq(labels).sum().item()
update_progress_bar(progress_bar_obj, index=i, loss=(running_loss / (i + 1)), acc=100. * (correct / total),
c=correct, t=total)
# 5. Test Network
def test(epoch):
global best_acc
net.eval()
correct = 0
total = 0
test_loss = 0
with torch.no_grad():
for i, (images, labels) in enumerate(test_dataset_loader):
images, labels = images.to(device), labels.to(device)
outputs = net(images)
loss = criterion(outputs, labels)
test_loss += loss.item()
_, predicted = torch.max(outputs, 1)
total += labels.size(0)
correct += predicted.eq(labels).sum().item()
acc = 100 * correct / total
print()
print("Accuracy of whole test dataset: %.2f %%" % acc)
if acc > best_acc:
state = {
'net': net.state_dict(),
'acc': acc,
'epoch': epoch,
}
if not os.path.isdir('checkpoint/' + model_name):
os.mkdir('checkpoint/' + model_name)
torch.save(state, './checkpoint/' + model_name + '/ckpt.pth')
best_acc = acc
print('Acc > best_acc, Saving net, acc')
for epoch in range(start_epoch, start_epoch + 150):
train(epoch)
test(epoch)