-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathOptim.py
executable file
·64 lines (52 loc) · 2.09 KB
/
Optim.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import math
import torch.optim as optim
class Optim(object):
def _makeOptimizer(self):
if self.method == 'sgd':
self.optimizer = optim.SGD(self.params, lr=self.lr)
elif self.method == 'adagrad':
self.optimizer = optim.Adagrad(self.params, lr=self.lr)
elif self.method == 'adadelta':
self.optimizer = optim.Adadelta(self.params, lr=self.lr)
elif self.method == 'adam':
self.optimizer = optim.Adam(self.params, lr=self.lr)
else:
raise RuntimeError("Invalid optim method: " + self.method)
def __init__(self, params, method, lr, max_grad_norm, lr_decay=1, start_decay_at=None):
self.params = list(params) # careful: params may be a generator
self.last_ppl = None
self.lr = lr
self.max_grad_norm = max_grad_norm
self.method = method
self.lr_decay = lr_decay
self.start_decay_at = start_decay_at
self.start_decay = False
self._makeOptimizer()
def step(self):
# Compute gradients norm.
grad_norm = 0
for param in self.params:
grad_norm += math.pow(param.grad.data.norm(), 2)
grad_norm = math.sqrt(grad_norm)
if grad_norm > 0:
shrinkage = self.max_grad_norm / grad_norm
else:
shrinkage = 1.
for param in self.params:
if shrinkage < 1:
param.grad.data.mul_(shrinkage)
self.optimizer.step()
return grad_norm
# decay learning rate if val perf does not improve or we hit the start_decay_at limit
def updateLearningRate(self, ppl, epoch):
if self.start_decay_at is not None and epoch >= self.start_decay_at:
self.start_decay = True
if self.last_ppl is not None and ppl > self.last_ppl:
self.start_decay = True
if self.start_decay:
self.lr = self.lr * self.lr_decay
print("Decaying learning rate to %g" % self.lr)
#only decay for one epoch
self.start_decay = False
self.last_ppl = ppl
self._makeOptimizer()