-
Notifications
You must be signed in to change notification settings - Fork 86
/
SimulationDistributed.py
284 lines (245 loc) · 10.4 KB
/
SimulationDistributed.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
import copy
import numpy as np
from random import sample, shuffle
import random
import datetime
import os.path
import matplotlib.pyplot as plt
import argparse
# local address to save simulated users, simulated articles, and results
from conf import sim_files_folder, save_address
from util_functions import featureUniform, gaussianFeature, dsigmoid, sigmoid
from Articles import ArticleManager
from Users.ClusteredUsers import UserManager
from lib.AsyncLinUCB import AsyncLinUCB
from lib.DisLinUCB import DisLinUCB
from lib.AsyncLinUCB_AM import AsyncLinUCB_AM
from lib.FedGLB_UCB import FedGLB_UCB
class simulateOnlineData(object):
def __init__(self, context_dimension, testing_iterations, plot, articles,
users, noise=lambda: 0, reward_model='linear', signature='', NoiseScale=0.0, poolArticleSize=None):
self.simulation_signature = signature
self.context_dimension = context_dimension
self.testing_iterations = testing_iterations
self.batchSize = 1
self.plot = plot
self.noise = noise
self.reward_model = reward_model
self.NoiseScale = NoiseScale
self.articles = articles
self.users = users
if poolArticleSize is None:
self.poolArticleSize = len(self.articles)
else:
self.poolArticleSize = poolArticleSize
def getTheta(self):
Theta = np.zeros(shape = (self.context_dimension, len(self.users)))
for i in range(len(self.users)):
Theta.T[i] = self.users[i].theta
return Theta
def batchRecord(self, iter_):
print("Iteration %d"%iter_, " Elapsed time", datetime.datetime.now() - self.startTime)
def getReward(self, user, pickedArticle):
inner_prod = np.dot(user.theta, pickedArticle.featureVector)
if self.reward_model == 'linear':
reward = inner_prod
elif self.reward_model == 'sigmoid':
reward = sigmoid(inner_prod)
else:
raise ValueError
return reward
def GetOptimalReward(self, user, articlePool):
maxReward = float('-inf')
maxx = None
for x in articlePool:
reward = self.getReward(user, x)
if reward > maxReward:
maxReward = reward
maxx = x
if self.reward_model == 'linear':
maxReward = maxReward
elif self.reward_model == 'sigmoid':
maxReward = sigmoid(maxReward)
else:
raise ValueError
return maxReward, maxx
def getL2Diff(self, x, y):
return np.linalg.norm(x-y) # L2 norm
def regulateArticlePool(self):
# Randomly generate articles
self.articlePool = sample(self.articles, self.poolArticleSize)
def runAlgorithms(self, algorithms):
self.startTime = datetime.datetime.now()
timeRun = self.startTime.strftime('_%m_%d_%H_%M')
filenameWriteRegret = os.path.join(save_address, 'AccRegret' + timeRun + '.csv')
filenameWriteCommCost = os.path.join(save_address, 'AccCommCost' + timeRun + '.csv')
filenameWritePara = os.path.join(save_address, 'ParameterEstimation' + timeRun + '.csv')
tim_ = []
BatchCumlateRegret = {}
CommCostList = {}
AlgRegret = {}
ThetaDiffList = {}
ThetaDiff = {}
# Initialization
# userSize = len(self.users)
for alg_name, alg in algorithms.items():
AlgRegret[alg_name] = []
CommCostList[alg_name] = []
BatchCumlateRegret[alg_name] = []
if alg.CanEstimateUserPreference:
ThetaDiffList[alg_name] = []
with open(filenameWriteRegret, 'w') as f:
f.write('Time(Iteration)')
f.write(',' + ','.join([str(alg_name) for alg_name in algorithms.keys()]))
f.write('\n')
with open(filenameWriteCommCost, 'w') as f:
f.write('Time(Iteration)')
f.write(',' + ','.join([str(alg_name) for alg_name in algorithms.keys()]))
f.write('\n')
with open(filenameWritePara, 'w') as f:
f.write('Time(Iteration)')
f.write(','+ ','.join([str(alg_name)+'Theta' for alg_name in ThetaDiffList.keys()]))
f.write('\n')
for iter_ in range(self.testing_iterations):
# prepare to record theta estimation error
for alg_name, alg in algorithms.items():
if alg.CanEstimateUserPreference:
ThetaDiff[alg_name] = 0
# for u in self.users:
u = random.choices(population=self.users, weights=None, k=1)[0]
self.regulateArticlePool()
noise = self.noise()
#get optimal reward for user x at time t
OptimalReward, OptimalArticle = self.GetOptimalReward(u, self.articlePool)
OptimalReward += noise
for alg_name, alg in algorithms.items():
pickedArticle = alg.decide(self.articlePool, u.id)
reward = self.getReward(u, pickedArticle) + noise
alg.updateParameters(pickedArticle, reward, u.id)
regret = OptimalReward - reward # pseudo regret, since noise is canceled out
AlgRegret[alg_name].append(regret)
CommCostList[alg_name].append(alg.totalCommCost)
#update parameter estimation record
if alg.CanEstimateUserPreference:
ThetaDiff[alg_name] += self.getL2Diff(u.theta, alg.getTheta(u.id))
for alg_name, alg in algorithms.items():
if alg.CanEstimateUserPreference:
ThetaDiffList[alg_name] += [ThetaDiff[alg_name]]
if iter_%self.batchSize == 0:
self.batchRecord(iter_)
tim_.append(iter_)
for alg_name, alg in algorithms.items():
cumRegret = sum(AlgRegret[alg_name])
BatchCumlateRegret[alg_name].append(cumRegret)
print("{0: <16}: cum_regret {1}, cum_comm {2}".format(alg_name, cumRegret, alg.totalCommCost))
with open(filenameWriteRegret, 'a+') as f:
f.write(str(iter_))
f.write(',' + ','.join([str(BatchCumlateRegret[alg_name][-1]) for alg_name in algorithms.keys()]))
f.write('\n')
with open(filenameWriteCommCost, 'a+') as f:
f.write(str(iter_))
f.write(',' + ','.join([str(CommCostList[alg_name][-1]) for alg_name in algorithms.keys()]))
f.write('\n')
with open(filenameWritePara, 'a+') as f:
f.write(str(iter_))
f.write(','+ ','.join([str(ThetaDiffList[alg_name][-1]) for alg_name in ThetaDiffList.keys()]))
f.write('\n')
if (self.plot==True): # only plot
# # plot the results
fig, axa = plt.subplots(2, 1, sharex='all')
# Remove horizontal space between axes
fig.subplots_adjust(hspace=0)
print("=====Regret=====")
for alg_name in algorithms.keys():
axa[0].plot(tim_, BatchCumlateRegret[alg_name],label = alg_name)
print('%s: %.2f' % (alg_name, BatchCumlateRegret[alg_name][-1]))
axa[0].legend(loc='upper left',prop={'size':9})
axa[0].set_xlabel("Iteration")
axa[0].set_ylabel("Accumulative Regret")
axa[1].set_ylim(bottom=0, top=200)
print("=====Comm Cost=====")
for alg_name in algorithms.keys():
axa[1].plot(tim_, CommCostList[alg_name],label = alg_name)
print('%s: %.2f' % (alg_name, CommCostList[alg_name][-1]))
axa[1].set_xlabel("Iteration")
axa[1].set_ylabel("Communication Cost")
axa[1].set_ylim(bottom=0, top=20000)
plt.savefig(os.path.join(save_address, "regretAndcommCost" + "_" + str(timeRun) + '.png'), dpi=300, bbox_inches='tight', pad_inches=0.0)
plt.show()
finalRegret = {}
for alg_name in algorithms.keys():
finalRegret[alg_name] = BatchCumlateRegret[alg_name][:-1]
return finalRegret
if __name__ == '__main__':
parser = argparse.ArgumentParser(description = '')
parser.add_argument('--T', dest='T', help='total number of iterations')
parser.add_argument('--n', dest='n', help='total number of clients')
parser.add_argument('--contextdim', type=int, help='Set dimension of context features.')
parser.add_argument('--globaldim', dest='global_dim', help='Set dimension of globally shared context features.')
parser.add_argument('--rewardmodel', dest='reward_model', help='Set reward model to be linear or sigmoid.')
args = parser.parse_args()
## Environment Settings ##
config = {}
if args.contextdim:
config["context_dimension"] = int(args.contextdim)
else:
config["context_dimension"] = 25
if args.T:
config["testing_iterations"] = int(args.T)
else:
config["testing_iterations"] = 50000
if args.n:
config["n_users"] = int(args.n)
else:
config["n_users"] = 1000
if args.global_dim:
config["global_dim"] = int(args.global_dim)
assert config["global_dim"] < config["context_dimension"]
else:
config["global_dim"] = config["context_dimension"]
if args.reward_model:
config["reward_model"] = args.reward_model
else:
config["reward_model"] = 'linear'
config["NoiseScale"] = 0.1 # standard deviation of Gaussian noise
config["n_articles"] = 1000
poolArticleSize = 25
## Set Up Simulation ##
UM = UserManager(config["context_dimension"], config["n_users"], thetaFunc=gaussianFeature, argv={'l2_limit': 1})
if config["global_dim"] == config["context_dimension"]:
users = UM.simulateThetaForHomoUsers()
else:
users = UM.simulateThetaForHeteroUsers(global_dim=config["global_dim"])
AM = ArticleManager(config["context_dimension"], n_articles=config["n_articles"], FeatureFunc=gaussianFeature, argv={'l2_limit': 1}, ArticleGroups=0)
articles = AM.simulateArticlePool()
simExperiment = simulateOnlineData( context_dimension=config["context_dimension"],
testing_iterations=config["testing_iterations"],
plot=True,
articles=articles,
users = users,
noise=lambda: np.random.normal(scale=config["NoiseScale"]),
reward_model=config["reward_model"],
signature=AM.signature,
NoiseScale=config["NoiseScale"],
poolArticleSize=poolArticleSize)
## Initiate Bandit Algorithms ##
algorithms = {}
config["lambda_"] = 0.1
config["delta"] = 1e-1
S = 1
R = 0.5
c_mu = dsigmoid(S * 1)
D2 = (config["testing_iterations"]) / (config["n_users"] * config["context_dimension"]* np.log(config["testing_iterations"]))
algorithms['DisLinUCB'] = DisLinUCB(dimension=config["context_dimension"], alpha=-1, lambda_=config["lambda_"],
delta_=config["delta"],
NoiseScale=config["NoiseScale"], threshold=D2)
algorithms['AsyncLinUCB'] = AsyncLinUCB(dimension=config["context_dimension"], alpha=-1, lambda_=config["lambda_"], delta_=config["delta"],
NoiseScale=config["NoiseScale"], gammaU=5, gammaD=5)
algorithms['AsyncLinUCB_AM'] = AsyncLinUCB_AM(dimension_g=config["global_dim"], dimension_l=config["context_dimension"] - config["global_dim"], alpha=-1,
lambda_=config["lambda_"],
delta_=config["delta"],
NoiseScale=config["NoiseScale"], gammaU=5, gammaD=5)
algorithms['FedGLB_UCB'] = FedGLB_UCB(dimension=config["context_dimension"], lambda_=config["lambda_"], threshold=D2, n_users=config["n_users"], c_mu=c_mu, delta=config["delta"], S=S, R=R, alpha=None, alpha_t_scaling=0.1, init_x=np.zeros(config["context_dimension"]), max_iters=None)
## Run Simulation ##
print("Starting for ", simExperiment.simulation_signature)
simExperiment.runAlgorithms(algorithms)