-
Notifications
You must be signed in to change notification settings - Fork 86
/
Copy pathSimulation_save_file.py
533 lines (450 loc) · 20.8 KB
/
Simulation_save_file.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
import copy
import numpy as np
from random import sample, shuffle
from scipy.sparse import csgraph
import datetime
import os.path
import matplotlib.pyplot as plt
import argparse
from sklearn.decomposition import TruncatedSVD
from sklearn import cluster
from sklearn.decomposition import PCA
# local address to save simulated users, simulated articles, and results
from conf import sim_files_folder, save_address
from util_functions import featureUniform, gaussianFeature
from Articles import ArticleManager
from Users.Users import UserManager
from lib.LinUCB import N_LinUCBAlgorithm, Uniform_LinUCBAlgorithm,Hybrid_LinUCBAlgorithm
from lib.hLinUCB import HLinUCBAlgorithm
from lib.factorUCB import FactorUCBAlgorithm
from lib.CoLin import AsyCoLinUCBAlgorithm
from lib.CLUB import *
from lib.PTS import PTSAlgorithm
from lib.UCBPMF import UCBPMFAlgorithm
class simulateOnlineData(object):
def __init__(self, context_dimension, latent_dimension, training_iterations, testing_iterations, testing_method, plot, articles, users,
batchSize = 1000,
noise = lambda : 0,
matrixNoise = lambda:0,
type_ = 'UniformTheta',
signature = '',
poolArticleSize = 10,
NoiseScale = 0,
sparseLevel = 0,
epsilon = 1, Gepsilon = 1):
self.simulation_signature = signature
self.type = type_
self.context_dimension = context_dimension
self.latent_dimension = latent_dimension
self.training_iterations = training_iterations
self.testing_iterations = testing_iterations
self.testing_method = testing_method
self.plot = plot
self.noise = noise
self.matrixNoise = matrixNoise # noise to be added to W
self.NoiseScale = NoiseScale
self.articles = articles
self.users = users
self.sparseLevel = sparseLevel
self.poolArticleSize = poolArticleSize
self.batchSize = batchSize
#self.W = self.initializeW(epsilon)
#self.GW = self.initializeGW(Gepsilon)
self.W, self.W0 = self.constructAdjMatrix(sparseLevel)
W = self.W.copy()
self.GW = self.constructLaplacianMatrix(W, Gepsilon)
def constructGraph(self):
n = len(self.users)
G = np.zeros(shape = (n, n))
for ui in self.users:
for uj in self.users:
G[ui.id][uj.id] = np.dot(ui.theta, uj.theta) # is dot product sufficient
return G
def constructAdjMatrix(self, m):
n = len(self.users)
G = self.constructGraph()
W = np.zeros(shape = (n, n))
W0 = np.zeros(shape = (n, n)) # corrupt version of W
for ui in self.users:
for uj in self.users:
W[ui.id][uj.id] = G[ui.id][uj.id]
sim = W[ui.id][uj.id] + self.matrixNoise() # corrupt W with noise
if sim < 0:
sim = 0
W0[ui.id][uj.id] = sim
# find out the top M similar users in G
if m>0 and m<n:
similarity = sorted(G[ui.id], reverse=True)
threshold = similarity[m]
# trim the graph
for i in range(n):
if G[ui.id][i] <= threshold:
W[ui.id][i] = 0;
W0[ui.id][i] = 0;
W[ui.id] /= sum(W[ui.id])
W0[ui.id] /= sum(W0[ui.id])
return [W, W0]
def constructLaplacianMatrix(self, W, Gepsilon):
G = W.copy()
#Convert adjacency matrix of weighted graph to adjacency matrix of unweighted graph
for i in self.users:
for j in self.users:
if G[i.id][j.id] > 0:
G[i.id][j.id] = 1
L = csgraph.laplacian(G, normed = False)
print L
I = np.identity(n = G.shape[0])
GW = I + Gepsilon*L # W is a double stochastic matrix
print 'GW', GW
return GW.T
def getW(self):
return self.W
def getW0(self):
return self.W0
def getFullW(self):
return self.FullW
def getGW(self):
return self.GW
def getTheta(self):
Theta = np.zeros(shape = (self.dimension, len(self.users)))
for i in range(len(self.users)):
Theta.T[i] = self.users[i].theta
return Theta
def generateUserFeature(self,W):
svd = TruncatedSVD(n_components=20)
result = svd.fit(W).transform(W)
return result
def CoTheta(self):
for ui in self.users:
ui.CoTheta = np.zeros(self.context_dimension+self.latent_dimension)
for uj in self.users:
ui.CoTheta += self.W[uj.id][ui.id] * np.asarray(uj.theta)
print 'Users', ui.id, 'CoTheta', ui.CoTheta
def batchRecord(self, iter_):
print "Iteration %d"%iter_, "Pool", len(self.articlePool)," Elapsed time", datetime.datetime.now() - self.startTime
def regulateArticlePool(self):
# Randomly generate articles
self.articlePool = sample(self.articles, self.poolArticleSize)
def getReward(self, user, pickedArticle):
return np.dot(user.CoTheta, pickedArticle.featureVector)
def GetOptimalReward(self, user, articlePool):
maxReward = float('-inf')
maxx = None
for x in articlePool:
reward = self.getReward(user, x)
if reward > maxReward:
maxReward = reward
maxx = x
return maxReward, x
def getL2Diff(self, x, y):
return np.linalg.norm(x-y) # L2 norm
def runAlgorithms(self, algorithms):
self.startTime = datetime.datetime.now()
timeRun = self.startTime.strftime('_%m_%d_%H_%M')
filenameWriteRegret = os.path.join(save_address, 'AccRegret' + timeRun + '.csv')
filenameWritePara = os.path.join(save_address, 'ParameterEstimation' + timeRun + '.csv')
# compute co-theta for every user
self.CoTheta()
tim_ = []
BatchCumlateRegret = {}
AlgRegret = {}
ThetaDiffList = {}
CoThetaDiffList = {}
WDiffList = {}
VDiffList = {}
CoThetaVDiffList = {}
RDiffList ={}
RVDiffList = {}
ThetaDiff = {}
CoThetaDiff = {}
WDiff = {}
VDiff = {}
CoThetaVDiff = {}
RDiff ={}
RVDiff = {}
Var = {}
# Initialization
userSize = len(self.users)
for alg_name, alg in algorithms.items():
AlgRegret[alg_name] = []
BatchCumlateRegret[alg_name] = []
if alg.CanEstimateUserPreference:
ThetaDiffList[alg_name] = []
if alg.CanEstimateCoUserPreference:
CoThetaDiffList[alg_name] = []
if alg.CanEstimateW:
WDiffList[alg_name] = []
if alg.CanEstimateV:
VDiffList[alg_name] = []
CoThetaVDiffList[alg_name] = []
RVDiffList[alg_name] = []
RDiffList[alg_name] = []
Var[alg_name] = []
with open(filenameWriteRegret, 'w') as f:
f.write('Time(Iteration)')
f.write(',' + ','.join( [str(alg_name) for alg_name in algorithms.iterkeys()]))
f.write('\n')
with open(filenameWritePara, 'w') as f:
f.write('Time(Iteration)')
f.write(',' + ','.join([str(alg_name)+'CoTheta' for alg_name in CoThetaDiffList.iterkeys()]))
f.write(','+ ','.join([str(alg_name)+'Theta' for alg_name in ThetaDiffList.iterkeys()]))
f.write(','+ ','.join([str(alg_name)+'W' for alg_name in WDiffList.iterkeys()]))
f.write(','+ ','.join([str(alg_name)+'V' for alg_name in VDiffList.iterkeys()]))
f.write(',' + ','.join([str(alg_name)+'CoThetaV' for alg_name in CoThetaVDiffList.iterkeys()]))
f.write(','+ ','.join([str(alg_name)+'R' for alg_name in RDiffList.iterkeys()]))
f.write(','+ ','.join([str(alg_name)+'RV' for alg_name in RVDiffList.iterkeys()]))
f.write('\n')
# Training
shuffle(self.articles)
for iter_ in range(self.training_iterations):
article = self.articles[iter_]
for u in self.users:
noise = self.noise()
reward = self.getReward(u, article)
reward += noise
for alg_name, alg in algorithms.items():
alg.updateParameters(article, reward, u.id)
if 'syncCoLinUCB' in algorithms:
algorithms['syncCoLinUCB'].LateUpdate()
#Testing
for iter_ in range(self.testing_iterations):
# prepare to record theta estimation error
for alg_name, alg in algorithms.items():
if alg.CanEstimateUserPreference:
ThetaDiff[alg_name] = 0
if alg.CanEstimateCoUserPreference:
CoThetaDiff[alg_name] = 0
if alg.CanEstimateW:
WDiff[alg_name] = 0
if alg.CanEstimateV:
VDiff[alg_name] = 0
CoThetaVDiff[alg_name] = 0
RVDiff[alg_name] = 0
RDiff[alg_name] = 0
for u in self.users:
self.regulateArticlePool() # select random articles
noise = self.noise()
#get optimal reward for user x at time t
OptimalReward, OptimalArticle = self.GetOptimalReward(u, self.articlePool)
OptimalReward += noise
for alg_name, alg in algorithms.items():
pickedArticle = alg.decide(self.articlePool, u.id)
reward = self.getReward(u, pickedArticle) + noise
if (self.testing_method=="online"): # for batch test, do not update while testing
alg.updateParameters(pickedArticle, reward, u.id)
if alg_name =='CLUB':
n_components= alg.updateGraphClusters(u.id,'False')
regret = OptimalReward - reward
AlgRegret[alg_name].append(regret)
if u.id == 0:
if alg_name in ['LBFGS_random','LBFGS_random_around','LinUCB', 'LBFGS_gradient_inc']:
means, vars = alg.getProb(self.articlePool, u.id)
Var[alg_name].append(vars[0])
#update parameter estimation record
if alg.CanEstimateUserPreference:
ThetaDiff[alg_name] += self.getL2Diff(u.theta, alg.getTheta(u.id))
if alg.CanEstimateCoUserPreference:
CoThetaDiff[alg_name] += self.getL2Diff(u.CoTheta[:self.context_dimension], alg.getCoTheta(u.id)[:self.context_dimension])
if alg.CanEstimateW:
WDiff[alg_name] += self.getL2Diff(self.W.T[u.id], alg.getW(u.id))
if alg.CanEstimateV:
VDiff[alg_name] += self.getL2Diff(self.articles[pickedArticle.id].featureVector, alg.getV(pickedArticle.id))
CoThetaVDiff[alg_name] += self.getL2Diff(u.CoTheta[self.context_dimension:], alg.getCoTheta(u.id)[self.context_dimension:])
RVDiff[alg_name] += abs(u.CoTheta[self.context_dimension:].dot(self.articles[pickedArticle.id].featureVector[self.context_dimension:]) - alg.getCoTheta(u.id)[self.context_dimension:].dot(alg.getV(pickedArticle.id)[self.context_dimension:]))
RDiff[alg_name] += reward-noise - alg.getCoTheta(u.id).dot(alg.getV(pickedArticle.id))
if 'syncCoLinUCB' in algorithms:
algorithms['syncCoLinUCB'].LateUpdate()
for alg_name, alg in algorithms.items():
if alg.CanEstimateUserPreference:
ThetaDiffList[alg_name] += [ThetaDiff[alg_name]/userSize]
if alg.CanEstimateCoUserPreference:
CoThetaDiffList[alg_name] += [CoThetaDiff[alg_name]/userSize]
if alg.CanEstimateW:
WDiffList[alg_name] += [WDiff[alg_name]/userSize]
if alg.CanEstimateV:
VDiffList[alg_name] += [VDiff[alg_name]/userSize]
CoThetaVDiffList[alg_name] += [CoThetaVDiff[alg_name]/userSize]
RVDiffList[alg_name] += [RVDiff[alg_name]/userSize]
RDiffList[alg_name] += [RDiff[alg_name]/userSize]
if iter_%self.batchSize == 0:
self.batchRecord(iter_)
tim_.append(iter_)
for alg_name in algorithms.iterkeys():
BatchCumlateRegret[alg_name].append(sum(AlgRegret[alg_name]))
with open(filenameWriteRegret, 'a+') as f:
f.write(str(iter_))
f.write(',' + ','.join([str(BatchCumlateRegret[alg_name][-1]) for alg_name in algorithms.iterkeys()]))
f.write('\n')
with open(filenameWritePara, 'a+') as f:
f.write(str(iter_))
f.write(',' + ','.join([str(CoThetaDiffList[alg_name][-1]) for alg_name in CoThetaDiffList.iterkeys()]))
f.write(','+ ','.join([str(ThetaDiffList[alg_name][-1]) for alg_name in ThetaDiffList.iterkeys()]))
f.write(','+ ','.join([str(WDiffList[alg_name][-1]) for alg_name in WDiffList.iterkeys()]))
f.write(',' + ','.join([str(VDiffList[alg_name][-1]) for alg_name in VDiffList.iterkeys()]))
f.write(',' + ','.join([str(CoThetaVDiffList[alg_name][-1]) for alg_name in CoThetaVDiffList.iterkeys()]))
f.write(',' + ','.join([str(RVDiffList[alg_name][-1]) for alg_name in RVDiffList.iterkeys()]))
f.write(',' + ','.join([str(RDiffList[alg_name][-1]) for alg_name in RDiffList.iterkeys()]))
f.write('\n')
if (self.plot==True): # only plot
# plot the results
f, axa = plt.subplots(1, sharex=True)
for alg_name in algorithms.iterkeys():
axa.plot(tim_, BatchCumlateRegret[alg_name],label = alg_name)
print '%s: %.2f' % (alg_name, BatchCumlateRegret[alg_name][-1])
axa.legend(loc='upper left',prop={'size':9})
axa.set_xlabel("Iteration")
axa.set_ylabel("Regret")
axa.set_title("Accumulated Regret")
plt.show()
# plot the estimation error of co-theta
f, axa = plt.subplots(1, sharex=True)
time = range(self.testing_iterations)
for alg_name, alg in algorithms.items():
if alg.CanEstimateUserPreference:
axa.plot(time, ThetaDiffList[alg_name], label = alg_name + '_Theta')
if alg.CanEstimateCoUserPreference:
axa.plot(time, CoThetaDiffList[alg_name], label = alg_name + '_CoTheta')
# if alg.CanEstimateV:
# axa.plot(time, VDiffList[alg_name], label = alg_name + '_V')
# axa.plot(time, CoThetaVDiffList[alg_name], label = alg_name + '_CoThetaV')
# axa.plot(time, RVDiffList[alg_name], label = alg_name + '_RV')
# axa.plot(time, RDiffList[alg_name], label = alg_name + '_R')
axa.legend(loc='upper right',prop={'size':6})
axa.set_xlabel("Iteration")
axa.set_ylabel("L2 Diff")
axa.set_yscale('log')
axa.set_title("Parameter estimation error")
plt.show()
finalRegret = {}
for alg_name in algorithms.iterkeys():
finalRegret[alg_name] = BatchCumlateRegret[alg_name][:-1]
return finalRegret
def pca_articles(articles, order):
X = []
for i, article in enumerate(articles):
X.append(article.featureVector)
pca = PCA()
X_new = pca.fit_transform(X)
# X_new = np.asarray(X)
print('pca variance in each dim:', pca.explained_variance_ratio_)
print X_new
#default is descending order, where the latend features use least informative dimensions.
if order == 'random':
np.random.shuffle(X_new.T)
elif order == 'ascend':
X_new = np.fliplr(X_new)
elif order == 'origin':
X_new = X
for i, article in enumerate(articles):
articles[i].featureVector = X_new[i]
return
if __name__ == '__main__':
parser = argparse.ArgumentParser(description = '')
parser.add_argument('--alg', dest='alg', help='Select a specific algorithm, could be LinUCB, CoLin, hLinUCB, factorUCB, etc.')
parser.add_argument('--contextdim', type=int, help='Set dimension of context features.')
parser.add_argument('--userNum', dest = 'userNum', help = 'Set the userNum, for example 40, 80, 100')
parser.add_argument('--Sparsity', dest = 'SparsityLevel', help ='Set the SparsityLevel by choosing the top M most connected users, should be smaller than userNum, when equal to userNum, we are using a full connected graph')
parser.add_argument('--NoiseScale', dest = 'NoiseScale', help = 'Set NoiseScale')
parser.add_argument('--matrixNoise', dest = 'matrixNoise', help = 'Set MatrixNoiseScale')
parser.add_argument('--hiddendim', type=int, help='Set dimension of hidden features. This argument is only for algorithms that can estimate hidden feature')
#parser.add_argument('--WindowSize', dest = 'WindowSize', help = 'Set the Init WindowSize')
args = parser.parse_args()
algName = str(args.alg)
n_users = int(args.userNum)
sparseLevel = int(args.SparsityLevel)
NoiseScale = float(args.NoiseScale)
matrixNoise = float(args.matrixNoise)
RankoneInverse =args.RankoneInverse
if args.contextdim:
context_dimension = args.contextdim
else:
context_dimension = 20
if args.hiddendim:
latent_dimension = args.hiddendim
else:
latent_dimension = 0
training_iterations = 0
testing_iterations = 100
#Default parameter settings
NoiseScale = .01
alpha = 0.3
lambda_ = 0.1 # Initialize A
epsilon = 0 # initialize W
eta_ = 0.5
n_articles = 1000
ArticleGroups = 5
n_users = 10
UserGroups = 0
poolSize = 10
batchSize = 1
# Matrix parameters
matrixNoise = 0.01
sparseLevel = n_users # if smaller or equal to 0 or larger or enqual to usernum, matrix is fully connected
# Parameters for GOBLin
G_alpha = alpha
G_lambda_ = lambda_
Gepsilon = 1
userFilename = os.path.join(sim_files_folder, "users_"+str(n_users)+"context_"+str(context_dimension)+"latent_"+str(latent_dimension)+ "Ugroups" + str(UserGroups)+".json")
#"Run if there is no such file with these settings; if file already exist then comment out the below funciton"
# we can choose to simulate users every time we run the program or simulate users once, save it to 'sim_files_folder', and keep using it.
UM = UserManager(context_dimension+latent_dimension, n_users, UserGroups = UserGroups, thetaFunc=featureUniform, argv={'l2_limit':1})
# users = UM.simulateThetafromUsers()
# UM.saveUsers(users, userFilename, force = False)
users = UM.loadUsers(userFilename)
articlesFilename = os.path.join(sim_files_folder, "articles_"+str(n_articles)+"context_"+str(context_dimension)+"latent_"+str(latent_dimension)+ "Agroups" + str(ArticleGroups)+".json")
# Similarly, we can choose to simulate articles every time we run the program or simulate articles once, save it to 'sim_files_folder', and keep using it.
AM = ArticleManager(context_dimension+latent_dimension, n_articles=n_articles, ArticleGroups = ArticleGroups,
FeatureFunc=featureUniform, argv={'l2_limit':1})
# articles = AM.simulateArticlePool()
# AM.saveArticles(articles, articlesFilename, force=False)
articles = AM.loadArticles(articlesFilename)
#PCA
pca_articles(articles, 'random')
for i in range(len(articles)):
articles[i].contextFeatureVector = articles[i].featureVector[:context_dimension]
simExperiment = simulateOnlineData(context_dimension = context_dimension,
latent_dimension = latent_dimension,
training_iterations = training_iterations,
testing_iterations = testing_iterations,
testing_method = "online", # batch or online
plot = True,
articles=articles,
users = users,
noise = lambda : np.random.normal(scale = NoiseScale),
matrixNoise = lambda : np.random.normal(scale = matrixNoise),
batchSize = batchSize,
type_ = "UniformTheta",
signature = AM.signature,
sparseLevel = sparseLevel,
poolArticleSize = poolSize, NoiseScale = NoiseScale, epsilon = epsilon, Gepsilon =Gepsilon)
print "Starting for ", simExperiment.simulation_signature
algorithms = {}
if algName == 'LinUCB':
algorithms['LinUCB'] = N_LinUCBAlgorithm(dimension = context_dimension, alpha = alpha, lambda_ = lambda_, n = n_users)
if args.alg == 'CoLin':
algorithms['CoLin'] = AsyCoLinUCBAlgorithm(dimension=context_dimension, alpha = alpha, lambda_ = lambda_, n = n_users, W = simExperiment.getW())
algorithms['LinUCB'] = N_LinUCBAlgorithm(dimension = context_dimension, alpha = alpha, lambda_ = lambda_, n = n_users)
if algName == 'CLUB':
algorithms['CLUB'] = CLUBAlgorithm(dimension =context_dimension,alpha = alpha, lambda_ = lambda_, n = n_users, alpha_2 = 0.5, cluster_init = 'Erdos-Renyi')
# Algorithms that can estimate hidden feature
if algName == 'hLinUCB':
algorithms['hLinUCB'] = HLinUCBAlgorithm(context_dimension = context_dimension, latent_dimension = latent_dimension, alpha = 0.1, alpha2 = 0.1, lambda_ = lambda_, n = n_users, itemNum=n_articles, init='zero', window_size = -1)
algorithms['LinUCB'] = N_LinUCBAlgorithm(dimension = context_dimension, alpha = alpha, lambda_ = lambda_, n = n_users)
if algName == 'PTS':
algorithms['PTS'] = PTSAlgorithm(particle_num = 10, dimension = 10, n = n_users, itemNum=n_articles, sigma = np.sqrt(.5), sigmaU = 1, sigmaV = 1)
if algName == 'HybridLinUCB':
algorithms['HybridLinUCB'] = Hybrid_LinUCBAlgorithm(dimension = context_dimension, alpha = alpha, lambda_ = lambda_, userFeatureList=simExperiment.generateUserFeature(simExperiment.getW()))
if args.alg == 'UCBPMF':
algorithms['UCBPMF'] = UCBPMFAlgorithm(dimension = 10, n = n_users, itemNum=n_articles, sigma = np.sqrt(.5), sigmaU = 1, sigmaV = 1, alpha = 0.1)
if args.alg == 'factorUCB':
algorithms['FactorUCB'] = FactorUCBAlgorithm(context_dimension = context_dimension, latent_dimension = 5, alpha = 0.05, alpha2 = 0.025, lambda_ = lambda_, n = n_users, itemNum=n_articles, W = simExperiment.getW(), init='random', window_size = -1)
algorithms['LinUCB'] = N_LinUCBAlgorithm(dimension = context_dimension, alpha = alpha, lambda_ = lambda_, n = n_users)
if algName == 'All':
algorithms['LinUCB'] = N_LinUCBAlgorithm(dimension = context_dimension, alpha = alpha, lambda_ = lambda_, n = n_users)
algorithms['hLinUCB'] = HLinUCBAlgorithm(context_dimension = context_dimension, latent_dimension = 5, alpha = 0.1, alpha2 = 0.1, lambda_ = lambda_, n = n_users, itemNum=n_articles, init='random', window_size = -1)
algorithms['PTS'] = PTSAlgorithm(particle_num = 10, dimension = 10, n = n_users, itemNum=n_articles, sigma = np.sqrt(.5), sigmaU = 1, sigmaV = 1)
algorithms['HybridLinUCB'] = Hybrid_LinUCBAlgorithm(dimension = context_dimension, alpha = alpha, lambda_ = lambda_, userFeatureList=simExperiment.generateUserFeature(simExperiment.getW()))
algorithms['UCBPMF'] = UCBPMFAlgorithm(dimension = 10, n = n_users, itemNum=n_articles, sigma = np.sqrt(.5), sigmaU = 1, sigmaV = 1, alpha = 0.1)
algorithms['CoLin'] = AsyCoLinUCBAlgorithm(dimension=context_dimension, alpha = alpha, lambda_ = lambda_, n = n_users, W = simExperiment.getW())
algorithms['factorUCB'] = FactorUCBAlgorithm(context_dimension = context_dimension, latent_dimension = 5, alpha = 0.05, alpha2 = 0.025, lambda_ = lambda_, n = n_users, itemNum=n_articles, W = simExperiment.getW(), init='zero', window_size = -1)
simExperiment.runAlgorithms(algorithms)