-
Notifications
You must be signed in to change notification settings - Fork 98
XSAVE
XSAVE / XSAVE64 — Save Processor Extended States
Opcode / Instruction | Op/ En | 64/32 bit Mode Support | CPUID Feature Flag | Description |
NP 0F AE /4 XSAVE mem | M | V/V | XSAVE | Save state components specified by EDX:EAX to mem. |
NP REX.W + 0F AE /4 XSAVE64 mem | M | V/N.E. | XSAVE | Save state components specified by EDX:EAX to mem. |
Op/En | Operand 1 | Operand 2 | Operand 3 | Operand 4 |
M | ModRM:r/m (w) | NA | NA | NA |
Performs a full or partial save of processor state components to the XSAVE area located at the memory address specified by the destination operand. The implicit EDX:EAX register pair specifies a 64-bit instruction mask. The specific state components saved correspond to the bits set in the requested-feature bitmap (RFBM), which is the logical-AND of EDX:EAX and XCR0.
The format of the XSAVE area is detailed in Section 13.4, “XSAVE Area,” of Intel® 64 and IA-32 Architectures Soft- ware Developer’s Manual, Volume 1.
Section 13.7, “Operation of XSAVE,” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1 provides a detailed description of the operation of the XSAVE instruction. The following items provide a high-level outline:
-
XSAVE saves state component i if and only if RFBM[i] = 1.1
-
XSAVE does not modify bytes 511:464 of the legacy region of the XSAVE area (see Section 13.4.1, “Legacy
Region of an XSAVE Area”).
- XSAVE reads the XSTATE_BV field of the XSAVE header (see Section 13.4.2, “XSAVE Header”) and writes a
modified value back to memory as follows. If RFBM[i] = 1, XSAVE writes XSTATE_BV[i] with the value of XINUSE[i]. (XINUSE is a bitmap by which the processor tracks the status of various state components. See Section 13.6, “Processor Tracking of XSAVE-Managed State.”) If RFBM[i] = 0, XSAVE writes XSTATE_BV[i] with the value that it read from memory (it does not modify the bit). XSAVE does not write to any part of the XSAVE header other than the XSTATE_BV field.
- XSAVE always uses the standard format of the extended region of the XSAVE area (see Section 13.4.3,
“Extended Region of an XSAVE Area”).
Use of a destination operand not aligned to 64-byte boundary (in either 64-bit or 32-bit modes) results in a general-protection (#GP) exception. In 64-bit mode, the upper 32 bits of RDX and RAX are ignored.
RFBM ← XCR0 AND EDX:EAX;
/* bitwise logical AND */
OLD_BV ← XSTATE_BV field from XSAVE header;
IF RFBM[0] = 1
THEN store x87 state into legacy region of XSAVE area;
FI;
IF RFBM[1] = 1
1. An exception is made for MXCSR and MXCSR_MASK, which belong to state component 1 — SSE. XSAVE saves these values to mem-
ory if either RFBM[1] or RFBM[2] is 1.
THEN store XMM registers into legacy region of XSAVE area; // this step does not save MXCSR or MXCSR_MASK
FI;
IF RFBM[1] = 1 OR RFBM[2] = 1
THEN store MXCSR and MXCSR_MASK into legacy region of XSAVE area;
FI;
FOR i ← 2 TO 62
IF RFBM[i] = 1
THEN save XSAVE state component i at offset n from base of XSAVE area (n enumerated by CPUID(EAX=0DH,ECX=i):EBX);
FI;
ENDFOR;
XSTATE_BV field in XSAVE header ← (OLD_BV AND NOT RFBM) OR (XINUSE AND RFBM);
None.
XSAVE:
void _xsave( void * , unsigned __int64);
XSAVE:
void _xsave64( void * , unsigned __int64);
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. If a memory operand is not aligned on a 64-byte boundary, regardless of segment.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0. If CR4.OSXSAVE[bit 18] = 0. If the LOCK prefix is used.
#AC If this exception is disabled a general protection exception (
#GP) is signaled if the memory operand is not aligned on a 64-byte boundary, as described above. If the alignment check exception (
#AC) is enabled (and the CPL is 3), signaling of
#AC is not guaranteed and may vary with implementation, as follows. In all implementations where
#AC is not signaled, a general protection exception is signaled in its place. In addition, the width of the alignment check may also vary with implementation. For instance, for a given implementation, an align- ment check exception might be signaled for a 2-byte misalignment, whereas a general protec- tion exception might be signaled for all other misalignments (4-, 8-, or 16-byte misalignments).
#GP If a memory operand is not aligned on a 64-byte boundary, regardless of segment. If any part of the operand lies outside the effective address space from 0 to FFFFH.
#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0. If CR4.OSXSAVE[bit 18] = 0. If the LOCK prefix is used.
Same exceptions as in protected mode.
Same exceptions as in protected mode.
#GP(0) If the memory address is in a non-canonical form. If a memory operand is not aligned on a 64-byte boundary, regardless of segment.
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0. If CR4.OSXSAVE[bit 18] = 0. If the LOCK prefix is used.
#AC If this exception is disabled a general protection exception (
#GP) is signaled if the memory operand is not aligned on a 64-byte boundary, as described above. If the alignment check exception (
#AC) is enabled (and the CPL is 3), signaling of
#AC is not guaranteed and may vary with implementation, as follows. In all implementations where
#AC is not signaled, a general protection exception is signaled in its place. In addition, the width of the alignment check may also vary with implementation. For instance, for a given implementation, an align- ment check exception might be signaled for a 2-byte misalignment, whereas a general protec- tion exception might be signaled for all other misalignments (4-, 8-, or 16-byte misalignments).
Source: Intel® Architecture Software Developer's Manual (May 2018)
Generated: 5-6-2018