-
Notifications
You must be signed in to change notification settings - Fork 10
/
phase_mixing_utils.py
220 lines (185 loc) · 6.16 KB
/
phase_mixing_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
"""
phase_mixing_utils.py
Utilities for messing around with phase retrieval algorithms and
visualizing the phase problem
"""
from scipy.stats import multivariate_normal
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
import matplotlib.cm as cm
from cmocean.cm import phase as phase_cm
from skimage.feature import register_translation
def get_mag(FT_arr):
"""
Returns the magnitudes of the intensities from a Fourier transform
Parameters
----------
FT_arr : np.ndarray
An array of complex numbers
Returns
-------
np.ndarray
Array of magnitudes from Fourier transform
"""
return np.abs(FT_arr)
def get_phase(FT_arr):
"""
Returns the angles of the complex phases from a Fourier transform
Parameters
----------
FT_arr : np.ndarray
An array of complex numbers
Returns
-------
np.ndarray
Angles of the complex phases from Fourier transform
"""
return np.angle(FT_arr)
def mix_FT(mag_arr, phase_arr):
"""
Performs the Fourier transforms and then mixes the provided phases
and magnitudes.
Parameters
----------
mag_arr : np.ndarray
Array to be fourier transformed for its magnitudes
phase_arr : np.ndarray
Array to be fourier transformed for its complex phases
Returns
-------
np.ndarray
New complex array
"""
return mix_FT_arr(np.fft.fft2(mag_arr),np.fft.fft2(phase_arr))
def mix_FT_arr(mag_arr, phase_arr):
"""
Mixes two Fourier transform arrays by taking the magnitude from one
and the phase from the other. Arrays must be the same shape.
Parameters
----------
mag_arr : np.ndarray
Array of magnitudes
phase_arr : np.ndarray
Array of complex phases
Returns
-------
np.ndarray
New complex array
"""
mag = get_mag(mag_arr)
phase = get_phase(phase_arr)
return mag*np.exp(1j*phase)
def phase_intensity_plot(arr, ax=None, cb=True, min_alpha=0.0, cmap='ocean'):
"""
Plot the provided Fourier transform representing intensity using
alpha value and phase using colormap.
Parameters
----------
arr : np.ndarray
An array of complex numbers. This should be fftshifted already.
ax : matplotlib axis object
If provided, plot is drawn to axis object
cb : boolean
Show colorbar corresponding to phases (Default is True).
min_alpha : float
Map the magnitude of intensities to alphas: [min_alpha,1]
(Default is 0.0).
cmap : matplotlib colormap
Colormap for phases -- string will be used if provided.
(Default is cmocean phase cm -- hsv is a good alternative).
Returns
-------
Phase plot following Kevin Cowtan's Book of Fourier convention.
"""
r = get_mag(arr)
theta = get_phase(arr)
theta[theta<0]+=2*np.pi #correct for neg values of angle so no weird jumps going around 180 deg
theta /= 2*np.pi
disp_arr = phase_cm(theta)
# Scale alpha-values between 0 and 1
disp_arr[:,:,-1] = r/np.max(r)
# Move minimal alpha value to min_alpha
disp_arr[:,:,-1] += (1-disp_arr[:,:,-1])*min_alpha
if ax is None:
fig, ax = plt.subplots(figsize=(8,8))
elif ax is not None and cb:
raise ValueError('if you pass an axis you can\'t have cb=True')
if cmap == 'ocean':
cmap = phase_cm
# Relabel the colorbar without rescaling theta to be in [0,2pi]
if cb:
cax = ax.imshow(np.flipud(disp_arr), cmap=cmap, vmin=0, vmax=1)
cbar = fig.colorbar(cax, ticks=np.linspace(0, 1, 5))
labels = [ r"0", r"$\frac{\pi}{2}$", r"$\pi$",
r"$\frac{3\pi}{2}$", r"$2\pi$"]
cbar.ax.set_yticklabels(labels, fontsize=20)
else:
cax = ax.imshow(np.flipud(disp_arr), cmap=cmap)
if ax is None:
plt.show()
def gaussian_lattice(n_atoms, uc_size, n_tiles, means):
"""
Create a square lattice composed of unit cells each containg n_atoms
gaussians of unit variance.
Lattice dimensions are (uc_size*n_tiles)x(uc_size*n_tiles)
Parameters
----------
n_atoms : int
Number of atom-centered Gaussians
uc_size : float
Dimensions of unit cell
n_tiles : float or int
Number of unit cells to tile to generate lattice
means : np.ndarray
Array of locations for the gaussians. Each value must be less
than uc_size. Default variance is uc_size/10
Returns
-------
Array containg the lattice
"""
uc = np.zeros((uc_size,uc_size))
X,Y = np.meshgrid(np.arange(uc_size),np.arange(uc_size))
pos = np.empty(X.shape + (2,))
pos[:, :, 0] = X; pos[:, :, 1] = Y
for i in range(n_atoms):
mvn = multivariate_normal(mean=means[i],cov = uc_size/10.)
uc = uc + mvn.pdf(pos)
return np.tile(uc,(n_tiles,n_tiles))
def rings():
"""
Example Gaussian lattice with a unit cell containing a ring of 10
atoms
Returns
-------
np.ndarray
array containing the density at each point in the lattice
"""
th = np.linspace(0,2*np.pi,11)
circ_mu = np.array([[50+20*np.cos(t),50+20*np.sin(t)] for t in th[:-1]])
return gaussian_lattice(10,100,20, circ_mu)
def align_and_plot(pr, true_im):
"""
Determines the proper rotation and translation for matching the reconstructed real space image to the true one
inputs
--------
pr : a PhaseRetrieval object that has run some reconstruction
true_im : ndarry of the original real space image
"""
errs = np.zeros(4)
for i in range(4):
shift, errs[i], blarg = register_translation(true_im, np.rot90(pr.real_space_guess,k=i))
n_rot = np.argmin(errs)
shift, error, blargh= register_translation(true_im,np.rot90(pr.real_space_guess,k=n_rot))
fixed = np.roll(np.rot90(pr.real_space_guess,k=n_rot),shift.astype(np.int),axis=(0,1))
plt.imshow(fixed)
plt.show()
plt.title('orig')
plt.imshow(true_im)
plt.show()
error = np.zeros(pr.rs_track.shape[0])
for i,im in enumerate(pr.rs_track):
shift, error[i], diffphase = register_translation(true_im, np.rot90(im,k=n_rot))
plt.plot(error)
plt.ylabel('error')
plt.show()