-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathindex.html
258 lines (218 loc) · 12.4 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<!-- Meta tags for social media banners, these should be filled in appropriatly as they are your "business card" -->
<!-- Replace the content tag with appropriate information -->
<meta name="description" content="DESCRIPTION META TAG">
<meta property="og:title" content="SOCIAL MEDIA TITLE TAG"/>
<meta property="og:description" content="SOCIAL MEDIA DESCRIPTION TAG TAG"/>
<meta property="og:url" content="URL OF THE WEBSITE"/>
<!-- Path to banner image, should be in the path listed below. Optimal dimenssions are 1200X630-->
<meta property="og:image" content="static/image/your_banner_image.png" />
<meta property="og:image:width" content="1200"/>
<meta property="og:image:height" content="630"/>
<meta name="twitter:title" content="TWITTER BANNER TITLE META TAG">
<meta name="twitter:description" content="TWITTER BANNER DESCRIPTION META TAG">
<!-- Path to banner image, should be in the path listed below. Optimal dimenssions are 1200X600-->
<meta name="twitter:image" content="static/images/your_twitter_banner_image.png">
<meta name="twitter:card" content="summary_large_image">
<!-- Keywords for your paper to be indexed by-->
<meta name="keywords" content="KEYWORDS SHOULD BE PLACED HERE">
<meta name="viewport" content="width=device-width, initial-scale=1">
<title>SemSharing</title>
<link rel="icon" type="image/x-icon" href="static/images/favico.ico">
<link href="https://fonts.googleapis.com/css?family=Google+Sans|Noto+Sans|Castoro"
rel="stylesheet">
<link rel="stylesheet" href="static/css/bulma.min.css">
<link rel="stylesheet" href="static/css/bulma-carousel.min.css">
<link rel="stylesheet" href="static/css/bulma-slider.min.css">
<link rel="stylesheet" href="static/css/fontawesome.all.min.css">
<link rel="stylesheet"
href="https://cdn.jsdelivr.net/gh/jpswalsh/academicons@1/css/academicons.min.css">
<link rel="stylesheet" href="static/css/index.css">
<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.5.1/jquery.min.js"></script>
<script src="https://documentcloud.adobe.com/view-sdk/main.js"></script>
<script defer src="static/js/fontawesome.all.min.js"></script>
<script src="static/js/bulma-carousel.min.js"></script>
<script src="static/js/bulma-slider.min.js"></script>
<script src="static/js/index.js"></script>
<script type="text/javascript" async
src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/MathJax.js?config=TeX-MML-AM_CHTML">
</script>
<script type="text/x-mathjax-config">
MathJax.Hub.Config({
tex2jax: {
inlineMath: [['$','$'], ['\\(','\\)']],
processEscapes: true
}
});
</script>
</head>
<body>
<section class="hero">
<div class="hero-body">
<div class="container is-max-desktop">
<div class="columns is-centered">
<div class="column has-text-centered">
<h1 class="title is-1 publication-title">AI-Generated Incentive Mechanism and Full-Duplex Semantic Communications for Information Sharing</h1>
<div class="is-size-5 publication-authors">
<!-- Paper authors -->
<span class="author-block">
Hongyang Du, Jiacheng Wang, Dusit Niyato, Jiawen Kang, Zehui Xiong, Dong In Kim</span>
</div>
<div class="is-size-5 publication-authors">
<span class="author-block">Nanyang Technological University<br>IEEE Journal on Selected Areas in Communications</span>
</div>
<div class="column has-text-centered">
<div class="publication-links">
<!-- Arxiv PDF link -->
<span class="link-block">
<a href="https://arxiv.org/pdf/2303.01896.pdf" target="_blank"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="fas fa-file-pdf"></i>
</span>
<span>Paper</span>
</a>
</span>
<!-- Supplementary PDF link -->
<!-- <span class="link-block">
<a href="static/pdfs/supplementary_material.pdf" target="_blank"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="fas fa-file-pdf"></i>
</span>
<span>Supplementary</span>
</a>
</span> -->
<!-- Github link -->
<span class="link-block">
<a href="https://github.com/HongyangDu/SemSharing" target="_blank"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="fab fa-github"></i>
</span>
<span>Code</span>
</a>
</span>
<!-- ArXiv abstract Link -->
<span class="link-block">
<a href="https://arxiv.org/abs/2303.01896" target="_blank"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="ai ai-arxiv"></i>
</span>
<span>arXiv</span>
</a>
</span>
</div>
</div>
</div>
</div>
</div>
</div>
</section>
<!-- Paper abstract -->
<section class="section hero is-light">
<div class="container is-max-desktop">
<div class="columns is-centered has-text-centered">
<div class="column is-four-fifths">
<h2 class="title is-3">Abstract</h2>
<div class="content has-text-justified">
<p>
The next generation of Internet services, such as Metaverse, rely on mixed reality (MR) technology to provide immersive user experiences. However, the limited computation power of MR headset-mounted devices (HMDs) hinders the deployment of such services. Therefore, we propose an efficient information sharing scheme based on full-duplex device-to-device (D2D) semantic communications to address this issue. Our approach enables users to avoid heavy and repetitive computational tasks, such as artificial intelligence-generated content (AIGC) in the view images of all MR users. Specifically, a user can transmit the generated content and semantic information extracted from their view image to nearby users, who can then use this information to obtain the spatial matching of computation results under their view images. We analyze the performance of full-duplex D2D communications, including the achievable rate and bit error probability, by using generalized small-scale fading models. To facilitate semantic information sharing among users, we design a contract theoretic AI-generated incentive mechanism. The proposed diffusion model generates the optimal contract design, outperforming two deep reinforcement learning algorithms, i.e., proximal policy optimization and soft actor-critic algorithms. Our numerical analysis experiment proves the effectiveness of our proposed methods.
</p>
</div>
</div>
</div>
</div>
</section>
<!-- End paper abstract -->
<section class="section hero">
<div class="hero-body">
<div class="container is-max-desktop content">
<p>This repository hosts a demonstration of the semantic encoder and decoder algorithm as presented in the paper:</p>
<blockquote>
<p><strong>"AI-Generated Incentive Mechanism and Full-Duplex Semantic Communications for Information Sharing"</strong></p>
<p>Authored by Hongyang Du, Jiacheng Wang, Dusit Niyato, Jiawen Kang, Zehui Xiong, and Dong In Kim, accepted by IEEE JSAC.</p>
<p>The paper can be accessed <a href="https://ieeexplore.ieee.org/document/10158526">Here</a> or <a href="https://arxiv.org/abs/2303.01896">Arxiv</a>.</p>
</blockquote>
<img src="readme/img0.png" alt="System Model">
<h2>🔧 Environment Setup</h2>
<p>To create a new conda environment, execute the following command:</p>
<pre><code>conda create --name sems python==3.7</code></pre>
<h2>⚡Activate Environment</h2>
<p>Activate the created environment with:</p>
<pre><code>conda activate sems</code></pre>
<h2>📦 Install Required Packages</h2>
<p>The following packages can be installed using pip:</p>
<pre><code>pip install matplotlib==3.1.3
pip install torch
pip install opencv-python==4.1.2.30
pip install scipy
pip install yacs
pip install torchvision
pip install scikit-image</code></pre>
<p>Download the checkpoints files by referring:</p>
<pre><code>SemSharing\jsr_code\checkpoints\googledown.txt</code></pre>
<h2>🏃♀️ Run the Program</h2>
<p>Run <code>run.py</code> to start the program.</p>
<h2>🔍 Check the Results</h2>
<p>In this demo, we consider that there are two users, whose view images are:</p>
<img src="readme/1.jpg" width="60%">
<img src="readme/2.jpg" width="60%">
<p>After running the code, several results can be viewed in PyCharm:</p>
<img src="readme/img1.png" width="60%">
<p>For instance, the safe walk area calculated by the first user:</p>
<img src="readme/img2.png" width="60%">
<p>Semantic matching results of two view images:</p>
<img src="readme/img3.png" width="60%">
<p>Another way to show semantic matching results of two view images:</p>
<img src="readme/img4.png" width="60%">
<p>How the second user transforms the view image of the first user to match their own view image:</p>
<img src="readme/img41.png" width="60%">
<p>The safe walk area information that the second user obtains based on the semantic information shared by the first user:</p>
<img src="readme/img5.png" width="60%">
<p>Then, without performing the safe walk area detecting task, the second user can know that the road in front of him/her is safe.</p>
<h2>📚 Cite Our Work</h2>
<p>Should our code assist in your research, please acknowledge our work by citing:</p>
<pre><code>@article{du2023ai,
title={{AI}-generated incentive mechanism and full-duplex semantic communications for information sharing},
author={Du, Hongyang and Wang, Jiacheng and Niyato, Dusit and Kang, Jiawen and Xiong, Zehui and Kim, Dong In},
journal={IEEE Journal on Selected Areas in Communications},
year={2023},
publisher={IEEE}
}</code></pre>
<h2>📚 Acknowledgement</h2>
<p>As we claimed in our paper, this repository used the codes in the following papers:</p>
<ul>
<li>JSR-Net: <a href="https://github.com/vojirt/JSRNet">https://github.com/vojirt/JSRNet</a></li>
<li>SuperPoint: <a href="https://github.com/rpautrat/SuperPoint">https://github.com/rpautrat/SuperPoint</a></li>
<li>SuperGlue: <a href="https://github.com/magicleap/SuperGluePretrainedNetwork">https://github.com/magicleap/SuperGluePretrainedNetwork</a></li>
</ul>
<p>Please consider citing these papers if their codes are used in your research.</p>
<p>For the AI-generated incentive part in the paper, please refer to our tutorial paper: <a href="https://arxiv.org/abs/2308.05384">Beyond Deep Reinforcement Learning: A Tutorial on Generative Diffusion Models in Network Optimization</a> and <a href="https://github.com/HongyangDu/GDMOPT">the codes</a>.</p>
</div>
</div>
</section>
<footer class="footer">
<div class="container">
<div class="columns is-centered">
<div class="column is-8">
<div class="content">
<p>
This page was built using the <a href="https://github.com/eliahuhorwitz/Academic-project-page-template" target="_blank">Academic Project Page Template</a> which was adopted from the <a href="https://nerfies.github.io" target="_blank">Nerfies</a> project page.
You are free to borrow the of this website, we just ask that you link back to this page in the footer. <br> This website is licensed under a <a rel="license" href="http://creativecommons.org/licenses/by-sa/4.0/" target="_blank">Creative
Commons Attribution-ShareAlike 4.0 International License</a>.
</p>
</div>
</div>
</div>
</div>
</footer>
<!-- Statcounter tracking code -->
<!-- You can add a tracker to track page visits by creating an account at statcounter.com -->
<!-- End of Statcounter Code -->
</body>
</html>