-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmain.py
54 lines (47 loc) · 1.72 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import tushare
import numpy as np
import matplotlib.pyplot as plt
from GaussianHMM import GaussianHMM
# from hmmlearn import hmm
# data = tushare.get_hist_data("hs300")["close"]
# data = data.to_numpy()
if __name__ == "__main__":
data = tushare.get_hist_data("hs300")["close"]
n_days = len(data)
train_data, test_data = (
data[: int(n_days * 0.8)].to_numpy(),
data[int(n_days * 0.8) :].to_numpy(),
)
print("length of training data: ", len(train_data))
print("length of test data: ", len(test_data))
# num_iters = 100
# num_states = [4, 8, 16, 32]
# for n in num_states:
# prob = []
# for i in range(num_iters):
# hmm = GaussianHMM(n_state=n, x_size=1, iter=i)
# hmm.train(data.reshape(-1, 1))
# prob.append(hmm.X_prob(data.reshape(-1, 1)))
# plt.plot(range(num_iters), prob, label="states number: {}".format(n))
# plt.legend()
# plt.xlabel("number of iterations")
# plt.ylabel("loglikelihood")
# plt.show()
num_states = [4, 8, 16, 32]
for n in num_states:
hmm = GaussianHMM(n_state=4, x_size=1, iter=50)
hmm.train(train_data.reshape(-1, 1))
predictions, _ = hmm.generate_seq(len(test_data))
plt.figure()
plt.plot(predictions, label="predictions")
plt.plot(test_data, label="actual values")
plt.legend()
plt.ylim((2500, 5000))
plt.title("{} hidden states".format(n))
plt.xlabel("t")
plt.ylabel("price")
plt.savefig("{}_hidden_states_predictions".format(n))
# print("means:", hmm.emit_means)
# print("covs:", hmm.emit_covars)
# print("initial: ", hmm.emit_prob)
# print("transition: ", hmm.transmat_prob)