-
Notifications
You must be signed in to change notification settings - Fork 3
/
memorizing_associations_task.py
537 lines (449 loc) · 25.1 KB
/
memorizing_associations_task.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
import argparse
import json
import os
import random
import socket
import sys
import time
import warnings
# from collections import OrderedDict
from datetime import datetime
import torch
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import torch.multiprocessing as mp
import torch.nn.functional
import torch.nn.parallel
import torch.utils.data
import torch.utils.data.distributed
from torch.utils.tensorboard import SummaryWriter
import utils.checkpoint
import utils.meters
import utils.metrics
from data.memorizing_associations_dataset import MemorizingAssociationsDataset
from functions.autograd_functions import SpikeFunction
from functions.plasticity_functions import InvertedOjaWithSoftUpperBound
from models.network_models import MemorizingAssociations
from models.neuron_models import IafPscDelta
parser = argparse.ArgumentParser(description='Memorizing associations task training')
parser.add_argument('--sequence_length', default=10, type=int, metavar='SEQUENCE_LENGTH',
help='The number of vector-label pairs (default: 10)')
parser.add_argument('--num_classes', default=10, type=int, metavar='NUM_CLASSES',
help='The number of classes (default: 10)')
parser.add_argument('--feature_size', default=10, type=int, metavar='FEATURE_SIZE',
help='Size of the input features (default: 10)')
parser.add_argument('--inf_data', default=1, type=int, metavar='INF_DATA',
help='If 1, then generate a new dataset for every iteration of BPTT (default: 1)')
parser.add_argument('--num_time_steps', default=100, type=int, metavar='N',
help='Number of time steps for each fact (default: 100)')
parser.add_argument('--workers', default=4, type=int, metavar='N',
help='Number of data loading workers (default: 4)')
parser.add_argument('--prefetch_factor', default=2, type=int, metavar='N',
help='Prefetch prefetch_factor * workers examples (default: 2)')
parser.add_argument('--embedding_size', default=80, type=int, metavar='N',
help='Embedding size (default: 80)')
parser.add_argument('--memory_size', default=100, type=int, metavar='N',
help='Size of the memory matrix (default: 100)')
parser.add_argument('--w_max', default=1.0, type=float, metavar='N',
help='Soft maximum of Hebbian weights (default: 1.0)')
parser.add_argument('--gamma_pos', default=0.3, type=float, metavar='N',
help='Write factor of Hebbian rule (default: 0.3)')
parser.add_argument('--gamma_neg', default=0.3, type=float, metavar='N',
help='Forget factor of Hebbian rule (default: 0.3)')
parser.add_argument('--tau_trace', default=20.0, type=float, metavar='N',
help='Time constant of key- and value-trace (default: 20.0)')
parser.add_argument('--readout_delay', default=1, type=int, metavar='N',
help='Synaptic delay of the feedback-connections from value-neurons to key-neurons in the '
'reading layer (default: 1)')
parser.add_argument('--thr', default=0.1, type=float, metavar='N',
help='Spike threshold (default: 0.1)')
parser.add_argument('--perfect_reset', action='store_true',
help='Set the membrane potential to zero after a spike')
parser.add_argument('--refractory_time_steps', default=3, type=int, metavar='N',
help='The number of time steps the neuron is refractory (default: 3)')
parser.add_argument('--tau_mem', default=20.0, type=float, metavar='N',
help='Neuron membrane time constant (default: 20.0)')
parser.add_argument('--dampening_factor', default=1.0, type=float, metavar='N',
help='Scale factor for spike pseudo-derivative (default: 1.0)')
parser.add_argument('--epochs', default=250, type=int, metavar='N',
help='Number of total epochs to run (default: 250)')
parser.add_argument('--batch_size', default=512, type=int, metavar='N',
help='Mini-batch size (default: 512), this is the total '
'batch size of all GPUs on the current node when '
'using Data Parallel or Distributed Data Parallel')
parser.add_argument('--learning_rate', default=0.003, type=float, metavar='N',
help='Initial learning rate (default: 0.003)')
parser.add_argument('--learning_rate_decay', default=0.85, type=float, metavar='N',
help='Learning rate decay (default: 0.85)')
parser.add_argument('--decay_learning_rate_every', default=20, type=int, metavar='N',
help='Decay the learning rate every N epochs (default: 20)')
parser.add_argument('--max_grad_norm', default=40.0, type=float, metavar='N',
help='Gradients with an L2 norm larger than max_grad_norm will be clipped '
'to have an L2 norm of max_grad_norm. If non-positive, then the gradient will '
'not be clipped. (default: 40.0)')
parser.add_argument('--l2', default=1e-5, type=float, metavar='N',
help='L2 rate regularization factor (default: 1e-5)')
parser.add_argument('--target_rate', default=0.0, type=float, metavar='N',
help='Target firing rate in Hz for L2 regularization (default: 0.0)')
parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
help='Manual epoch number (useful on restarts, default: 0)')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='Path to latest checkpoint (default: none)')
parser.add_argument('--check_params', default=1, type=int, choices=[0, 1], metavar='CHECK_PARAMS',
help='When loading from a checkpoint check if the model was trained with the same parameters '
'as requested now (default: 1)')
parser.add_argument('--evaluate', action='store_true',
help='Evaluate the model on the test set')
parser.add_argument('--logging', action='store_true',
help='Write tensorboard logs')
parser.add_argument('--print_freq', default=1, type=int, metavar='N',
help='Print frequency (default: 1)')
parser.add_argument('--world_size', default=-1, type=int, metavar='N',
help='Number of nodes for distributed training (default: -1)')
parser.add_argument('--rank', default=-1, type=int, metavar='N',
help='Node rank for distributed training (default: -1)')
parser.add_argument('--dist_url', default='tcp://127.0.0.1:23456', type=str, metavar='DIST_URL',
help='URL used to set up distributed training (default: tcp://127.0.0.1:23456)')
parser.add_argument('--dist_backend', default='nccl', choices=['nccl', 'mpi', 'gloo'], type=str, metavar='DIST_BACKEND',
help='Distributed backend to use (default: nccl)')
parser.add_argument('--seed', default=None, type=int, metavar='N',
help='Seed for initializing training (default: none)')
parser.add_argument('--dataset_seed', default=42, type=int, metavar='N',
help='Seed for creating the dataset (default: 42)')
parser.add_argument('--gpu', default=None, type=int, metavar='N',
help='GPU id to use (default: none)')
parser.add_argument('--multiprocessing_distributed', action='store_true',
help='Use multi-processing distributed training to launch '
'N processes per node, which has N GPUs. This is the '
'fastest way to use PyTorch for either single node or '
'multi node data parallel training')
best_acc = 0
log_dir = ''
writer = None
time_stamp = datetime.now().strftime('%b%d_%H-%M-%S')
with open('version.txt') as f:
version = f.readline()
def main():
args = parser.parse_args()
args.inf_data = True if args.inf_data else False
args.max_grad_norm = args.max_grad_norm if args.max_grad_norm > 0 else None
if args.seed is not None:
random.seed(args.seed)
torch.manual_seed(args.seed)
cudnn.deterministic = True
warnings.warn('You have chosen to seed training. '
'This will turn on the CUDNN deterministic setting, '
'which can slow down your training considerably! '
'You may see unexpected behavior when restarting '
'from checkpoints.')
if args.gpu is not None:
warnings.warn('You have chosen a specific GPU. This will completely '
'disable data parallelism.')
if args.dist_url == "env://" and args.world_size == -1:
args.world_size = int(os.environ["WORLD_SIZE"])
args.distributed = args.world_size > 1 or args.multiprocessing_distributed
num_gpus_per_node = torch.cuda.device_count()
if args.multiprocessing_distributed:
# Since we have num_gpus_per_node processes per node, the total world_size
# needs to be adjusted accordingly
args.world_size = num_gpus_per_node * args.world_size
# Use torch.multiprocessing.spawn to launch distributed processes: the
# main_worker process function
mp.spawn(main_worker, nprocs=num_gpus_per_node, args=(num_gpus_per_node, args)) # noqa
else:
# Simply call main_worker function
main_worker(args.gpu, num_gpus_per_node, args)
def main_worker(gpu, num_gpus_per_node, args):
global best_acc
global log_dir
global writer
global time_stamp
global version
args.gpu = gpu
if args.gpu is not None:
print("Use GPU: {} for training".format(args.gpu))
if args.distributed:
if args.dist_url == "env://" and args.rank == -1:
args.rank = int(os.environ["RANK"])
if args.multiprocessing_distributed:
# For multiprocessing distributed training, rank needs to be the
# global rank among all the processes
args.rank = args.rank * num_gpus_per_node + gpu
dist.init_process_group(backend=args.dist_backend, init_method=args.dist_url,
world_size=args.world_size, rank=args.rank)
# Data loading code
train_set = MemorizingAssociationsDataset(sequence_length=args.sequence_length, num_classes=args.num_classes,
feature_size=args.feature_size, inf_data=args.inf_data, dataset_size=9000,
seed=args.dataset_seed)
val_set = MemorizingAssociationsDataset(sequence_length=args.sequence_length, num_classes=args.num_classes,
feature_size=args.feature_size, inf_data=False, dataset_size=1000,
seed=args.dataset_seed+args.workers)
test_set = MemorizingAssociationsDataset(sequence_length=args.sequence_length, num_classes=args.num_classes,
feature_size=args.feature_size, inf_data=False, dataset_size=2000,
seed=args.dataset_seed+args.workers+1)
# Create model
print("=> creating model '{model_name}'".format(model_name=MemorizingAssociations.__name__))
model = MemorizingAssociations(
input_size=args.feature_size,
output_size=args.num_classes,
num_embeddings=args.num_classes,
embedding_size=args.embedding_size,
memory_size=args.memory_size,
num_time_steps=args.num_time_steps,
readout_delay=args.readout_delay,
tau_trace=args.tau_trace,
plasticity_rule=InvertedOjaWithSoftUpperBound(w_max=args.w_max,
gamma_pos=args.gamma_pos,
gamma_neg=args.gamma_neg),
dynamics=IafPscDelta(thr=args.thr,
perfect_reset=args.perfect_reset,
refractory_time_steps=args.refractory_time_steps,
tau_mem=args.tau_mem,
spike_function=SpikeFunction,
dampening_factor=args.dampening_factor))
if not torch.cuda.is_available():
print('using CPU, this will be slow')
elif args.distributed:
# For multiprocessing distributed, DistributedDataParallel constructor
# should always set the single device scope, otherwise,
# DistributedDataParallel will use all available devices.
if args.gpu is not None:
torch.cuda.set_device(args.gpu)
model.cuda(args.gpu)
# When using a single GPU per process and per
# DistributedDataParallel, we need to divide the batch size
# ourselves based on the total number of GPUs we have
args.batch_size = int(args.batch_size / num_gpus_per_node)
args.workers = int((args.workers + num_gpus_per_node - 1) / num_gpus_per_node)
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
else:
model.cuda()
# DistributedDataParallel will divide and allocate batch_size to all
# available GPUs if device_ids are not set
model = torch.nn.parallel.DistributedDataParallel(model)
elif args.gpu is not None:
torch.cuda.set_device(args.gpu)
model = model.cuda(args.gpu)
else:
# DataParallel will divide and allocate batch_size to all available GPUs
model = torch.nn.DataParallel(model).cuda()
# Define loss function (criterion) and optimizer
criterion = torch.nn.CrossEntropyLoss().cuda(args.gpu)
optimizer = torch.optim.Adam(model.parameters(), args.learning_rate)
# Optionally resume from a checkpoint
if args.resume:
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
if args.gpu is None:
checkpoint = utils.checkpoint.load_checkpoint(args.resume, 'cpu')
else:
# Map model to be loaded to specified single gpu.
checkpoint = utils.checkpoint.load_checkpoint(args.resume, 'cuda:{}'.format(args.gpu))
args.start_epoch = checkpoint['epoch']
best_acc = checkpoint['best_acc']
log_dir = checkpoint['log_dir']
time_stamp = checkpoint['time_stamp']
# Checkpoint parameters have to match current parameters. If not, abort.
ignore_keys = ['workers', 'prefetch_factor', 'epochs', 'start_epoch', 'resume',
'evaluate', 'logging', 'print_freq', 'world_size', 'rank', 'dist_url', 'dist_backend',
'seed', 'gpu', 'multiprocessing_distributed', 'distributed']
if args.evaluate:
ignore_keys.append('batch_size')
ignore_keys.append('sequence_length')
if args.check_params:
for key, val in vars(checkpoint['params']).items():
if key not in ignore_keys:
if vars(args)[key] != val:
print("=> You tried to restart training of a model that was trained with different "
"parameters as you requested now. Aborting...")
sys.exit()
if args.gpu is not None:
# best_acc may be from a checkpoint from a different GPU
best_acc = best_acc.to(args.gpu)
# new_state_dict = OrderedDict()
# for k, v in checkpoint['state_dict'].items():
# if k.startswith('module.'):
# k = k[len('module.'):] # remove `module.`
# new_state_dict[k] = v
# model.load_state_dict(new_state_dict)
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
print("=> loaded checkpoint '{}' (epoch {})".format(args.resume, checkpoint['epoch']))
else:
print("=> no checkpoint found at '{}'".format(args.resume))
cudnn.benchmark = True
if args.distributed:
train_sampler = torch.utils.data.distributed.DistributedSampler(train_set)
else:
train_sampler = None
train_loader = torch.utils.data.DataLoader(
train_set, batch_size=args.batch_size, shuffle=(train_sampler is None),
num_workers=args.workers, persistent_workers=True, prefetch_factor=args.prefetch_factor,
sampler=train_sampler, worker_init_fn=train_set.set_worker_seed)
val_loader = torch.utils.data.DataLoader(
val_set, batch_size=args.batch_size, shuffle=False, num_workers=args.workers, persistent_workers=True,
prefetch_factor=args.prefetch_factor)
test_loader = torch.utils.data.DataLoader(
test_set, batch_size=args.batch_size, shuffle=False, num_workers=args.workers, persistent_workers=True,
prefetch_factor=args.prefetch_factor)
if args.evaluate:
validate(test_loader, model, criterion, args, prefix='Test: ')
return
if not args.multiprocessing_distributed or (args.multiprocessing_distributed and
args.rank % num_gpus_per_node == 0):
if log_dir and args.logging:
# Use the directory that is stored in checkpoint if we resume training
writer = SummaryWriter(log_dir=log_dir)
elif args.logging:
log_dir = os.path.join(
'results', 'runs', time_stamp +
'_' + socket.gethostname() +
f'_version-{version}-memorizing_associations_task-{args.sequence_length}-{args.num_classes}')
writer = SummaryWriter(log_dir=log_dir)
def pretty_json(hp):
json_hp = json.dumps(hp, indent=2, sort_keys=False)
return "".join('\t' + line for line in json_hp.splitlines(True))
writer.add_text('Info/params', pretty_json(vars(args)))
for epoch in range(args.start_epoch, args.epochs):
if args.distributed:
train_sampler.set_epoch(epoch)
current_lr = adjust_learning_rate(optimizer, epoch, args)
# Train for one epoch
train_loss, reg_loss, train_acc = train(train_loader, model, criterion, optimizer, epoch, args)
# Evaluate on validation set
val_loss, val_acc = validate(val_loader, model, criterion, args)
# Remember best acc@1 and save checkpoint
is_best = val_acc > best_acc
best_acc = max(val_acc, best_acc)
if not args.multiprocessing_distributed or (args.multiprocessing_distributed and
args.rank % num_gpus_per_node == 0):
if args.logging:
writer.add_scalar('Loss/train', train_loss, epoch)
writer.add_scalar('Acc/train', train_acc, epoch)
writer.add_scalar('Loss/val', val_loss, epoch)
writer.add_scalar('Acc/val', val_acc, epoch)
writer.add_scalar('Misc/lr', current_lr, epoch)
writer.add_scalar('Misc/reg_loss', reg_loss, epoch)
if epoch + 1 == args.epochs:
writer.flush()
utils.checkpoint.save_checkpoint({
'epoch': epoch + 1,
'state_dict': model.state_dict(),
'best_acc': best_acc,
'optimizer': optimizer.state_dict(),
'log_dir': writer.get_logdir() if args.logging else '',
'time_stamp': time_stamp,
'params': args
}, is_best, filename=os.path.join(
'results', 'checkpoints', time_stamp +
'_' + socket.gethostname() +
f'_version-{version}-memorizing_associations_task-{args.sequence_length}-{args.num_classes}'))
def train(train_loader, model, criterion, optimizer, epoch, args):
batch_time = utils.meters.AverageMeter('Time', ':6.3f')
data_time = utils.meters.AverageMeter('Data', ':6.3f')
losses = utils.meters.AverageMeter('Loss', ':.4e')
reg_losses = utils.meters.AverageMeter('RegLoss', ':.4e')
top1 = utils.meters.AverageMeter('Acc', ':6.2f')
progress = utils.meters.ProgressMeter(
len(train_loader),
[batch_time, data_time, losses, top1],
prefix="Epoch: [{}]".format(epoch))
# Switch to train mode
model.train()
end = time.time()
for i, (sample, sequence_length) in enumerate(train_loader):
# Measure data loading time
data_time.update(time.time() - end)
features, labels, query, answer = sample['features'], sample['labels'], sample['query'], sample['answer']
if args.gpu is not None:
features = features.cuda(args.gpu, non_blocking=True)
labels = labels.cuda(args.gpu, non_blocking=True)
query = query.cuda(args.gpu, non_blocking=True)
if torch.cuda.is_available():
answer = answer.cuda(args.gpu, non_blocking=True)
sequence_length = sequence_length.cuda(args.gpu, non_blocking=True)
# Compute output
output, encoding_outputs, writing_outputs, reading_outputs = model(features, labels, query)
loss = criterion(output, answer)
# Regularization
def compute_l2_loss(x, target, weight):
if isinstance(weight, torch.Tensor):
mean = torch.mean(torch.sum(x, dim=1) / weight.unsqueeze(1), dim=0)
else:
mean = torch.mean(torch.sum(x, dim=1) / weight, dim=0)
return torch.mean((mean - target)**2)
l2_act_reg_loss = 0
weight_query = 1e-3 * args.num_time_steps
weight_features = 1e-3 * sequence_length * args.num_time_steps
l2_act_reg_loss += compute_l2_loss(encoding_outputs[0], args.target_rate, weight=weight_features)
l2_act_reg_loss += compute_l2_loss(encoding_outputs[1], args.target_rate, weight=weight_features)
l2_act_reg_loss += compute_l2_loss(encoding_outputs[2], args.target_rate, weight=weight_query)
l2_act_reg_loss += compute_l2_loss(writing_outputs[1], args.target_rate, weight=weight_features)
l2_act_reg_loss += compute_l2_loss(writing_outputs[2], args.target_rate, weight=weight_features)
l2_act_reg_loss += compute_l2_loss(reading_outputs[0], args.target_rate, weight=weight_query)
l2_act_reg_loss += compute_l2_loss(reading_outputs[1], args.target_rate, weight=weight_query)
act_reg_loss = args.l2 * l2_act_reg_loss
if epoch > 0:
# Start regularizing after an initial training period
loss += act_reg_loss
# Measure accuracy and record loss
acc = utils.metrics.accuracy(output, answer, top_k=(1,))
losses.update(loss.item(), features.size(0))
reg_losses.update(act_reg_loss, features.size(0))
top1.update(acc[0], features.size(0))
# Compute gradient
optimizer.zero_grad(set_to_none=True)
loss.backward()
if args.max_grad_norm is not None:
# Clip L2 norm of gradient to max_grad_norm
torch.nn.utils.clip_grad_norm_(parameters=model.parameters(), max_norm=args.max_grad_norm)
# Do SGD step
optimizer.step()
# Measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
progress.display(i)
return losses.avg, reg_losses.avg, top1.avg
def validate(data_loader, model, criterion, args, prefix="Val: "):
batch_time = utils.meters.AverageMeter('Time', ':6.3f')
losses = utils.meters.AverageMeter('Loss', ':.4e')
top1 = utils.meters.AverageMeter('Acc', ':6.2f')
progress = utils.meters.ProgressMeter(
len(data_loader),
[batch_time, losses, top1],
prefix=prefix)
# Switch to evaluate mode
model.eval()
with torch.no_grad():
end = time.time()
for i, (sample, sequence_length) in enumerate(data_loader):
features, labels, query, answer = sample['features'], sample['labels'], sample['query'], sample['answer']
if args.gpu is not None:
features = features.cuda(args.gpu, non_blocking=True)
labels = labels.cuda(args.gpu, non_blocking=True)
query = query.cuda(args.gpu, non_blocking=True)
if torch.cuda.is_available():
answer = answer.cuda(args.gpu, non_blocking=True)
# Compute output
output, *_ = model(features, labels, query)
loss = criterion(output, answer)
# Measure accuracy and record loss
acc = utils.metrics.accuracy(output, answer, top_k=(1,))
losses.update(loss.item(), features.size(0))
top1.update(acc[0], features.size(0))
# Measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
progress.display(i)
print(' * Acc {top1.avg:.3f}'.format(top1=top1))
return losses.avg, top1.avg
def adjust_learning_rate(optimizer, epoch, args):
"""Sets the learning rate to the initial LR decayed by X% every N epochs"""
lr = args.learning_rate * (args.learning_rate_decay ** (epoch // args.decay_learning_rate_every))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
return lr
if __name__ == '__main__':
main()