-
Notifications
You must be signed in to change notification settings - Fork 4
/
run.py
50 lines (41 loc) · 1.72 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import pytorch_lightning as pl
import hydra
from omegaconf import DictConfig
from pytorch_lightning.callbacks import LearningRateMonitor, ModelCheckpoint
import logging
from models.pl_module import MLPSNN
from pytorch_lightning.strategies import SingleDeviceStrategy
# Main entry point. We use Hydra (https://hydra.cc) for configuration management. Note, that Hydra changes the working directory, such that each run gets a unique directory.
@hydra.main(config_path="config", config_name="main", version_base=None)
def main(cfg: DictConfig):
logging.getLogger().addHandler(logging.FileHandler("out.log"))
logging.info(f"Experiment name: {cfg.exp_name}")
pl.seed_everything(cfg.random_seed, workers=True)
datamodule = hydra.utils.instantiate(cfg.dataset)
model = MLPSNN(cfg)
callbacks = []
model_ckpt_tracker: ModelCheckpoint = ModelCheckpoint(
monitor=cfg.get('tracking_metric', "val_acc_epoch"),
mode=cfg.get('tracking_mode', 'max'),
save_last=False,
save_top_k=1,
dirpath="ckpt"
)
lr_monitor = LearningRateMonitor(
logging_interval='step'
)
callbacks = [model_ckpt_tracker, lr_monitor]
trainer: pl.Trainer = pl.Trainer(
callbacks=callbacks,
logger=pl.loggers.CSVLogger("logs", name="mlp_snn"),
max_epochs=cfg.n_epochs,
gradient_clip_val=1.5,
enable_progress_bar=True,
strategy=SingleDeviceStrategy(device=cfg.device),
)
trainer.fit(model, datamodule=datamodule)
result = trainer.test(model, ckpt_path="best", datamodule=datamodule)
logging.info(f"Final result: {result}")
return trainer.checkpoint_callback.best_model_score.cpu().detach().numpy()
if __name__ == "__main__":
main()