-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy patheval_rewiring_sequential.py
104 lines (82 loc) · 3.71 KB
/
eval_rewiring_sequential.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
# /usr/bin/env python
import os
import utils as utils
from spaghetti import spaghetti_global as spaghetti
from spaghetti.mc_lif_group import McLifGroup
from spaghetti.poisson_pattern_group import PoissonPatternGroup
from spaghetti.rewiring_connection import RewiringConnection
from spaghetti.spike_monitor import SpikeMonitor
from spaghetti.voltage_monitor import VoltageMonitor
def main(experiment, sim_date, assemblies, weights,
assembly_neurons_idc, config, output_directory):
input_params = config["input_parameters"]
connection_params = config["connection_parameters"]
neuron_params = config["neuron_parameters"]
simulation_time_per_pattern = input_params["pattern_duration"] + input_params["pattern_delay"]
# Initialize the simulation environment.
spaghetti.spaghetti_init(directory=output_directory)
# Set the random seed.
spaghetti.kernel.set_master_seed(config["master_seed"])
# Create input neurons.
inp = PoissonPatternGroup(input_params["num_inputs"], input_params["rate"], input_params["rate_bg"],
params=input_params)
# Create the neuron.
neuron = McLifGroup(1, neuron_params["num_branches"], neuron_params)
# Connect input to neuron.
conn = RewiringConnection(inp, neuron, neuron.branch.syn_current, connection_params)
conn.learn = False
# Create some monitors which will record the simulation data.
SpikeMonitor(neuron, spaghetti.kernel.fn("test_output", "ras"))
SpikeMonitor(inp, spaghetti.kernel.fn("test_input", "ras"))
VoltageMonitor(neuron.soma, 0, spaghetti.kernel.fn("test_soma", "mem"),
paste_spikes=True, paste_spikes_from=neuron)
for i in range(neuron_params["num_branches"]):
VoltageMonitor(neuron.branch, (i, 0), spaghetti.kernel.fn("test_branch", "mem", i))
# Now simulate the model.
for w in weights:
conn.set_weights(w)
for assembly in assemblies:
inp.set_assemblies(assembly)
inp.set_assembly_neurons_idc(assembly_neurons_idc)
spaghetti.kernel.run_chunk(
simulation_time_per_pattern, 0,
len(assemblies) * len(weights) * simulation_time_per_pattern +
input_params["pattern_delay"])
spaghetti.kernel.run_chunk(input_params["pattern_delay"], 0,
len(assemblies) * len(weights) *
simulation_time_per_pattern +
input_params["pattern_delay"])
if __name__ == '__main__':
import numpy as np
experiment = "rewiring_ex3"
sim_date = "191204_132602/17"
master_seed = 4
np.random.seed(master_seed)
assemblies = [0, 3, 6]
assembly_neurons_idc = [i * 40 + np.arange(40) for i in range(8)]
# t = 1000s
# idc1 = 5424
# idc2 = 21674
# idc3 = 43345
# t = 2000s
idc1 = 10845
idc2 = 43345
idc3 = 75845
# t = 5000s
# idc1 = 27095
# idc2 = 108345
# idc3 = 189595
input_directory = os.path.join("results", experiment, sim_date, "data")
# Load the configuration file.
config = utils.load_configuration(os.path.join(
input_directory, "..", "config_" + experiment + ".yaml"))
num_branches = config["neuron_parameters"]["num_branches"]
config["master_seed"] = master_seed
# Load the weights.
with open(os.path.join(input_directory, "weights.0.dat"), "rb") as f:
lines = f.readlines()
weights1 = np.loadtxt(lines[idc1:idc1 + num_branches])
weights2 = np.loadtxt(lines[idc2:idc2 + num_branches])
weights3 = np.loadtxt(lines[idc3:idc3 + num_branches])
weights = [weights1, weights2, weights3]
main(experiment, sim_date, assemblies, weights, assembly_neurons_idc, config, input_directory)